
Generation of a Service Language for the
Resource Reservation Protocol Using Formal

Methods
María E. Villapol and Jonathan Billington

Cooperative Research Centre for Satellite Systems
University of South Australia

SPRI Building, Mawson Lakes, Adelaide SA 5095
Tel: 08 8302 3371 Fax: 08 8302 3873

maria@spri.levels.unisa.edu.au and jonathan.billington@unisa.edu.au

Abstract. The Resource Reservation Protocol
(RSVP) is a signalling protocol, which transports and
maintains Quality of Service (QoS) information along
the path of a data flow. It is being modelled and
analysed using a verification methodology proposed
by (Billington et al 1986). The methodology includes
a service and protocol specification. This paper is
focused on the definition, modelling, and analysis of
the RSVP service specification. A service language
including all the possible service primitives
sequences was also generated. It is being used as part
of the verification process of RSVP. Also, this
service specification will allow other resource
reservation protocols to be developed that satisfy this
service.

INTRODUCTION

Much research and protocol development work has
been done recently on the provision of services with
Quality of Service (QoS) guarantees over the Internet.
The Resource Reservation Protocol (RSVP) is one of
IETF’s proposals (Braden et al. 1997) (Durham et al.
1995) for conveying the QoS related information
along the communication path of a data flow (where
the data flow is a sequence of packets flowing
between a source application and one or more
destinations).

The Internet Protocols are specified in
documents called Request for Comments (RFCs). The
standard-related RFCs provide a narrative description
of the protocols. In most of these RFCs, there is little,
if any, use of formal techniques for specifying
communication protocols, such as state tables. Thus,
those documents are sometimes ambiguous, difficult
to understand, and imprecise. Also, protocol
implementations are probably the only mechanism to
validate and to "verify" the proposed standards. The
cost for fixing errors in the protocol found in the
implementation can be high.

In order to verify or design a protocol, there
needs to be a statement defining the requirements of
the protocol. This is known as a service specification
(ITU-T 1994). The Internet protocol standards are
weak in this respect, as they rarely describe a protocol

service.
RSVP is an Internet Standard specified in RFC

2205 (Braden et al. 1997). RFC 2205 has the
drawbacks described previously. Those disadvantages
together with the fact that RSVP is complex make it a
good target for formal specification and verification
activities.

RSVP has been modelled and analysed (Villapol
et al. 2000) based on a methodology for specifying
and validating communication protocols proposed by
(Billington et al. 1986). It has already been
successfully used in the formal studies of other
communication protocols, such as the OSI Transport
protocol Class 0 (Billington et al. 1986), and more
recently in the Wireless Transaction Protocol (WTP)
(Gordon et al. 2000). In the methodology, the
specification process is divided into: the service
specification and protocol specification. (Villapol et
al. 2000) describes the initial RSVP specification,
whereas this paper is focused on the service. It
provides a definition, modelling, and analysis of the
RSVP Service Specification using Coloured Petri
Nets (CPNs) (Jensen 1997a) and Finite State
Automata (FSA) (Barret et al. 1979).

The paper is organised as follows. RSVP is
described briefly in the next section. Then, the
proposed service specification for RSVP is presented.
After that, the CPN model of the proposed service
specification is outlined briefly. Then the model is
analysed. Next, the process for generating the service
language generated from the model is described.
Finally, the conclusions of the paper are presented.
The reader is assumed to be familiar with Coloured
Petri Nets (Jensen vol. 1 1997).

OVERVIEW OF RSVP

RSVP is a signalling protocol developed to create and
to maintain QoS information in the form of resource
reservations on each node along the path of a data
flow. RSVP may run on each end host running a QoS
application and router (ie RSVP-aware router). It
reserves resources for a data flow from the sender to
one or more destinations (ie multicast destination).
Unlike other signalling protocols, RSVP destinations

(or receivers) initiate resource reservation
establishment by sending reservation requests. Those
requests travel on the reverse path of the data flow by
following the pre-established route setup by RSVP
(Braden et al. 1997). RSVP is also responsible for
maintaining those reservation states on each node
along the way of the data flow. It follows a soft-state
approach where the reservation states established at
each node must be refreshed periodically; otherwise
they will be automatically removed. The approach is
intended to deal with IP dynamic route changes,
dynamic multicast group membership and dynamic
QoS changes (Braden et al. 1997).

RSVP runs on the top of IP1 at the level of a
transport protocol. It only carries control information.
Figure 1 illustrates the Internet protocol stack
showing the location of RSVP. A description of these
protocols, apart from RSVP, is beyond the scope of
this paper; however there is a wide range of literature
related to the Internet protocols (eg (Comer 2000)).

RSVP also interacts with other components of
the QoS Architecture as explained in (Braden et al.
1997) (Durham et al. 1995). A description of the
architecture and the relationship with RSVP is
beyond the scope of the paper.

RSVP SERVICE PRIMITIVES

Service primitives provide an abstract way to
describe the interaction between the RSVP service
user (ie QoS-aware application) and RSVP service
provider (see figure 2) (ITU-T 1994). A QoS-aware
application must interact with RSVP in order to get
some services such as a reservation request for a data
flow. RSVP is the service provider. RSVP entities at

1 RSVP may also run on top of UDP as explained in
(Braden et al. 1997).

each RSVP-aware router along the path of the data
flow interact in order to provide the requested
service.

RSVP specification provides several generic
interfaces between RSVP and other protocols and
mechanisms (Braden et al. 1997). Those interfaces
are particular to a real implementation. The proposed
RSVP service specification, otherwise, is intended to
provide a more abstract way to describe the
interaction between the application (ie service user)
and RSVP (ie the service provider). Thus, several
service primitives for RSVP have been defined based
on the Application/RSVP interface described in
(Braden et al. 1997) and the protocol specification (ie
by using service abstraction) (Braden et al. 1997)
(Villapol et al. 2000).

Each primitive can be either a request or an
indication. A request (Req) is used for the application
to ask for a service from RSVP. An indication (Ind)
is used by RSVP to notify the application of the
invocation of a request primitive by the other peer at
the other end or that RSVP generated an event.

Table 1 shows the list of the service primitives
that have been defined for RSVP and the
corresponding Application/RSVP calls. They are
described as follows:

1. RSVP-Sender (Req/Ind): a sender application
uses this primitive to establish the characteristics of a
data flow for a RSVP session. A session is a data
flow with a particular destination and transport-layer
protocol and is identified by an IP destination address
(unicast or multicast) of the data flow, IP protocol ID,
and destination port (optional) (eg UDP/TCP
destination port field) (Braden et al. 1997).

RSVPRSVPRSVP

Service
primitives

QoS-aware
application
QoS-aware
application

QoS-aware
application
QoS-aware
application

Figure 2: RSVP as a service provider

Applications

Data Link + Physical Layer

 IPv4/IPv6 with multicast support

 UDP
RSVP

QoS-aware Applications

TCP

Figure 1: RSVP in the Internet
architecture

Generic name Specific Name Application/
RSVP interface
name

RSVP-Sender Request
Indication

Sender
PathEvent
Upcall

RSVP-Reserve Request
Indication

Reserve
ResvEvent
Upcall

RSVP-RelSender Request
Indication

RelSender
No Defined

RSVP-RelReceiver Request
Indication

RelReserve
No Defined

RSVP-ChangeResv Request
Indication

Reserve
ResvEvent
Upcall

RSVP-ChangeSender Request
Indication

Sender
PathEvent
Upcall

Provided-Initiated Service
RSVP-ResvConf Indication ResvConf

Upcall
RSVP-SenderError Indication PathErr Upcall
RSVP-ResvError Indication ResvErr Upcall

Table 1: RSVP Service Primitives

2. RSVP-Reserve (Req/Ind): a receiver
application uses this primitive to establish or to
modify a reservation for a session.

3. RSVP-RelSender (Req/Ind): a sender
application uses this primitive to close a session. This
means that the user data flow will eventually not have
any QoS reserved.

4. RSVP-RelReceiver (Req/Ind): a receiver
application uses this primitive to close its session
with the sender. That means that the sender flow
travelling to the receiver will not eventually have any
QoS reserved.

5. RSVP-ChangeSender (Req/Ind): a sender
application uses this primitive to modify the traffic
characteristics of the data flow for a session.

6. RSVP-ChangeResv (Req/Ind): a receiver
application uses this primitive to modify a reservation
for the session. The reservation information can be
used by the other end or for the network.

7. RSVP-ResvConf (Ind): is used by the service
provider to confirm a reservation.

8. RSVP-SenderError (Ind): is used by the
service provider to report an error in propagation or
installation of the Sender’s data flow characteristics.

9. RSVP-ResvError (Ind): is used by the service
provider to report a reservation failure inside the
network.

In order to illustrate some of the above
definitions, figure 3 shows a typical RSVP service
primitive sequence. It shows the "control service
units" interchange between the sender, the network
and the receiver intended to establish a resource
reservation. In there, the Sender and Receiver
represent the service users (ie QoS-aware
applications), and RSVPSender, RSVPNetwork, and
RSVPReceiver represent the service provider.
Vertical lines on the picture represent communicating
entities. A horizontal line is used to represent the flow
of a control service unit generated as result of
invocation of a service primitive. Time increases
from the top of the chart, to the bottom of the chart.

MODEL OF RSVP SERVICE
SPECIFICATION

A model of the RSVP service specification is created
with Coloured Petri Nets (CPNs) (Jensen vol. 1
1997) using the Design/CPN software tool
(Kristensen 1998) (Meta 1993). Coloured Petri Nets
are a formal method, which can be used for modelling
and analysis of distributed and concurrent systems
(Jensen vol. 3 1997).

Assumptions and Requirements. RSVP
specification does not provide an explicit definition
of the service primitive sequences at each
application/RSVP interface. It is required for
developing the model. Thus, those sequences were
defined based on the description of RSVP (Braden et
al. 1997) and represented by using a service primitive
sequence table. The table is too big (a 15x15 matrix)
to be shown in this paper.

The model of the RSVP Service Specification
includes all the service primitives. The model is
created based on the information in the service
primitive sequence table and the following
assumptions, which are intended to simplify the
modelling and analysis tasks:

1. Topology: the model includes one sender and
one receiver connected by a unicast network which
may have multiple routers connected in any topology.

2. Flow/Sessions: a RSVP session is independent
of any other. Different sessions may generate the
same service primitive sequences, so only one session
is considered. For simplicity, only one flow is
considered.

3. Errors: only the errors that may occur during the
processing of the control service units generated by a
RSVPSenderReq, RSVPChangeSenderReq,
RSVPReserveReq, and RSVPChangeReserveReq are
considered. However, other errors that may be
generated by the network as result of RSVP protocol
procedures are not.

4. Merging: is a mechanism provided by RSVP to
control RSVP message overhead (Braden et al. 1997).

RSVP Service Primitive Sequence

Sender

11

RSVPSender

22

88
99

RSVPNetwork

33

77

1010

RSVPReceiver

44

66

1111

Receiver

55

Event NoEvent No

RSVPSenderReq
Sender

Sender
RSVPSenderInd

RSVPReserveReq
Reserve

Reserve

RSVPReserveInd
ResvConf

ResvConf

RSVPResvConfInd

Figure 3: A typical reservation setup sequence

It may affect the sequences of service primitives
generated on the sender side. However, merging is
not possible given that the network is unicast and
only one flow is considered.

5. Reservation Confirms: only an end-to-end
confirmation can be generated given that the network
is unicast and only one flow is considered.

6. Packet losses: packet loss recovery is a concern
of the protocol (ie RSVP). RSVP provides a
mechanism to deal with that by using periodic
refreshes and cleanups (Braden et al. 1997). Packet
loss shouldn’t affect the sequences of service
primitives.

7. Changes: both the sender and the receiver hosts
may generate multiple change requests. The number
of change requests, which can be generated by an
application, is limited in the model. It simplifies the
analysis of the model, such as language generation
and analysis.

8. Overtaking: the control service units sent from
the sender to the receiver or vice versa may not arrive
at the destination in the same order they were
delivered. The reasons for overtaking are the
existence of multiple routes between sender and
receiver and IP forwarding approach (Comer 2000).

General structure. In Design/CPN, the model is
arranged in pages. A CPN model includes the states,
which a system may be and the transitions between
them. Local states are represented by places which
have a type (colour set) associated with. Transitions
represent actions or service events. A marking shows
the state of a CPN and consists of a set of tokens
distributed on each place. A token is a value which
belongs to the type of the place (colour set).
Transitions are drawn as rectangles and places as
circles or ellipses.

The detailed model of the RSVP Service
Specification consists of ten pages (figure 4). The
hierarchical view has been designed based on the
different request-indication service primitive
sequences. The proposed service primitive sequences
are: data flow information setup (RSVPSender),

reservation setup (RSVPReserve), sender release
(RSVPRelSender), receiver release
(RSVPRelReceiver), change of data flow information
(RSVPChangeSender), change of reservation
(RSVPChangeResv), error during data flow
information installation (RSVPSenderError), error
during reservation installation (RSVPResvError), and
confirmation of a reservation request
(RSVPResvConf).

Global Declaration. Figure 5 shows the colour sets,
variables, and functions from the global declaration
node. The colour set State indicates the possible
states of application/RSVP interface at each end.
Two subsets of the colour set State have been
defined. The SenderState subset indicates the possible
states of the Sender/RSVP interface, while the
ReceiverState indicates the possible states of the
Receiver/RSVP interface. The states are defined as
follows:

� CLOSED: when the sender is in this state, the
session is closed. If the receiver is in this state, the
receiver application has torn down the existing
reservation for the session.

� SESSION: is the initial state for both the sender
and receiver.

� WAITINGRESV: means that the Sender’s data
flow information has been established but as yet no
reservation request has been received.

� RESVREADY: means that a reservation has
been established over the Sender’s data flow
information and along the path of the data flow.

(* States of RSVP entities *)
color State = with
SESSION|WAITINGRESV|RESVREADY|CLOSED|
NOSENDER|NORECEIVER;
color SenderState = subset State with
[SESSION,WAITINGRESV,RESVREADY,CLOSED,
NORECEIVER];
color ReceiverState = subset State with
[SESSION,WAITINGRESV,RESVREADY,CLOSED,
NOSENDER];
(* Service units *)
color UpStreamMessages = with
Reserve|ChangeResv|SenderError|
RelReceiver;
color DownStreamMessages = with
Sender|ChangeSender|ResvError|RelSender|
ResvConf;
(* User Request *)
color AppReq = with
ChangeSnd|ChangeReserve;
(* Inic *)
color Inic = with START;
var sta: State;
(* Functions *)
fun pathexists(sta:State)= (sta =
WAITINGRESV orelse sta = RESVREADY orelse
sta = NORECEIVER);
fun resvexists (sta:State) = sta =
RESVREADY;

Figure 5: Global declaration

RSVPResvError#9M

Hierarchy#10 GlobalDec#11

RSVPSenderError#8M

RSVPChangeSender#6M

RSVPInic#1M

RSVPChangeResv#7M

RSVPSender#2M RSVPReserve#3M

RSVPResvConf#10M

RSVPRelReceiver#5MRSVPRelSender#4M

Figure 4: CPN Hierarchy page

The following states have been included to
control the service primitives sequences:

� NOSENDER: the receiver has received an
indication that the sender user has left the session.

� NORECIEVER: the sender has received an
indication that the receiver user has torn down the
existing reservation for the data flow and the session.

The colour set AppReq represents the number of
either sender or reservation changes that can be
generated by the sender and receiver, respectively.

There are nine basic control service units
represented by the colour sets UpstreamMessages and
DowstreamMessages. The former represents the
control service units that travel from the receiver to
the sender, while the second represents the ones
travelling from sender to receiver. The colour set
UpstreamMessages contains the following set of
enumerated values:

� Reserve: is generated by the receiver protocol
entity after it receives a reservation request from the
receiver user.

� ChangeResv: is generated by the receiver
protocol entity after it receives a change reservation
request from the receiver user.

� SenderError: is generated by the network and
indicates that the sender’s data flow couldn’t be
installed for a particular reason.

� RelReciever: is generated by the receiver
protocol after receiving a release request from the
receiver user.

The colour set DowstreamMessages represents
the following set of enumerated values:

� Sender: is generated by the sender protocol
entity to communicate the sender’s data flow
characteristics along the path of the data flow.

� ChangeSender: is generated by the sender
protocol entity to change the characteristics of the
sender’s data flow.

� ResvError: is generated by the network as an
indication that the reservation couldn’t been installed
for a particular reason.

� RelSender: is generated by the sender protocol
after receiving a release request from the sender user.

� ResvConf: is generated by the sender as a
confirmation of a reservation request.

The variable sta is typed by the colour set State.
The functions are used to simplify guard inscriptions.
A pathexists function means the traffic characteristics
of the data flow has been established in the
correspondent node (ie the RSVP entity – sender or
receiver places - is in WAITINGRESV or
RESVREADY state). A resvexists function means
that a reservation has been established (ie the
correspondent RSVP entity is in RESVREADY
state).

Structure of CPN models. Three types of transition
are used to represent the service specification: service
primitive transition, error transition, and discard
transition:

� Service primitive transition: represents one of
the service primitives in table 1. The name of each
transition is the corresponding name in the table.

� Error transition: represents an error, which may
have happened in the network or in the end host.

� Discard transition: cleans the queues after a
session has been closed. It also handled situations,
which could lead to improper primitive sequences. In
addition, it is intended to simplify the analysis of the
model against incorrect termination. It represents
actions that would be applied for the protocol (ie
RSVP) or not.

A detailed description of all the pages of the
model is not possible due to space limitation. In order
to illustrate the structure and functionality of the
model two of the main component pages of the model
are described.

Each page of the model may have four places.
Two of them represent the state of the Sender
application/RSVP interface (ie Sender place) and the
Receiver application/RSVP interface (ie Receiver
place). The others (ie SndToRcv and RcvToSnd
places) represent the communication between the
sender and receiver applications. Fusion places (FG)
are used to group identical places in different pages.

Sender primitive sequence. The CPN model of the
sender primitive sequence is shown in figure 6. The
transition RSVPSenderReq models the action taken by
the Sender application to establish the initial traffic

SenderState
Sender

FG

RSVPSenderReq
C

DownStreamMessages

SndToRcv

FG

RSVPSenderInd
C

ReceiverState

Receiver FG

DownStreamError

Discard

[sta <> SESSION]

C

UpStreamMessages

RcvToSnd
FG

SESSION

WAITINGRESV
Sender

Sender

SESSION

WAITINGRESV

Sender

staSender

SenderError

Figure 6: CPN model of RSVP Sender primitive sequence

characteristics of the sender’s data flow. The result of
the action is to send a control service unit (ie Sender)
to the Receiver application. If there is not any error
during the installation of data flow’s characteristics,
the receiver application will receive a
RSVPSenderInd as an indication of the existence of a
data flow with some particular characteristics from
the sender application. Otherwise the network or the
receiver may have found problems to establish the
characteristics of the data flow, so a
DownStreamError will occur and a SenderError will
be generated and transmitted back to the sender. The
Discard transition models any action that should be
taken by the protocol to meet the service
specification. For example, the receiver application
can not receive an indication if it is in any state
different from the initial state (ie SESSION state).

Reserve primitive sequence. Figure 7 shows the
CPN model of the reserve primitive sequence. When
a receiver application wishes to make a reservation
for the flow whose information has already been
installed (ie the receiver is in WAITINGRESV state),
it generates a RSVPReserveReq. As result of this
action a Reserve service unit will be sent across the
network to the Sender. If there is not any error during
the establishment of the reservation, the sender
application will receive a RSVPReserveInd indicating
the characteristics of the reservation, which has been
established along the path of the data flow and send a
reservation confirmation (ResvConf). Otherwise, the
network or the sender may have found problems
installing the reservation, so a UpStreamError will
occur and a ResvError will be generated and sent
back to the receiver. If a reservation has already been
established (the sender is in either RESVREADY or
NORECEIVER state), the Reserve is discarded by the
Discard transition. It also may be noted that if the
sender is in a SESSION or CLOSED state, it is
because there is no current information about the
characteristics of the data flow, so a Reserve service
unit is discarded and an error message is sent back to
the sender.

Initial state. The Sender and receiver application
begin in the SESSION state – the Sender and
Receiver places have an initial marking of

1`SESSION. The communication places (ie
SndToRcv and RcvToSnd) are empty. The
application places, SenderApp and ReceiverApp,
have only one token each indicating that a Sender
Change and Reservation Change may occur. The
RSVPInic page initialises the model according to this
initial marking.

ANALYSIS OF THE CPN MODEL

The model was verified against the basic behavioural
properties by using a well-known technique called
state space analysis (Jensen vol. 2 1997). The state
space or OCC graph is a directed graph which
contains all possible occurrence sequences
(represented by nodes) and all reachable markings
(represented by arcs). A state space generator is
provided in Design/CPN. Thus, the full state report
for the entire state space was generated. It has 880
nodes and 3391 arcs.

The state report also shows the home and
liveness properties (Jensen vol. 1 1997). There are
four dead markings (or terminal states). They
correspond to the states where the sender has finished
a session, the receiver has torn down any existing
reservation and all service units have been removed
from the communication places. Those states are the
same except for the value of the SenderApp and
ReceiverApp places (ie application places) which
may or may not have a token. The marking value of
those places depends on when a sender or receiver
release occurs (before or after a change sender or
change reservation). Thus, for the initial marking, the
service behaves as expected (ie no deadlocks). Since
those markings form a home space the service always
terminates as expected. A home space is a set of
markings that can always be reached from all
reachable markings (Jensen vol. 1 1997).

The state report also provides information about
boundednees of places. Thus, it was checked that the
communication places are bounded, so a limited
numbers a control service units are generated. The
number of tokens located in the state places (Sender
and Receiver) is always one. Both can be in all the
expected states (eg WAITINGRESV state). It means,
for example, that an end-to-end sender state or

SenderState

Sender
FG

RSVPReserveInd
C

UpStreamMessages

RcvToSnd

FG

RSVPReserveReq
C

ReceiverState

Receiver
FG

 UpStreamResvError

DownStreamMessages

SndToRcv

FG

 Discard

[sta = RESVREADY orelse
sta = NORECEIVER]

C

WAITINGRESV

RESVREADY Reserve
Reserve

RESVREADY

WAITINGRESV

ReserveResvError

sta

Reserve

ResvConf

Figure 7: CPN model of RSVP Reserve primitive sequence

reservation can be established. Those results are
expected.

SERVICE LANGUAGE

The service language defines all the possible service
primitive sequences at both service access points. The
OCC graph includes not only the transitions
representing RSVP service primitives but other
transitions, such as error transitions. Design/CPN
does not provide explicit support for language
generation, which includes only the service primitive
sequences. Since the OCC graph can be seen as a
Finite State Automaton (FSA), the service language
was generated by using a well-known FSA reduction
technique (Barret et al. 1979) with the aid of the FSM
tool2.

The following steps were followed for the
service language generation. The service primitive
transitions in the CPN model were assigned different
numbers (no zero). The others were marked as zero
epsilon (or empty) transitions. A program wrote the
OCCgraph into a file format accepted by FSM3.

Then, the algorithm described in (Barret et al.
1979) was used to generate the minimal FSA. The
algorithm is based on the following steps: removal of
empty move cycles (remove empties), removal of
empty moves (remove empties), removal of non
determinism (determinisation), removal of
inaccessible states (minimisation), and reduction by
identifying and merging equivalent states
(minimisation). The FSM tool provides all the
programs for supporting those steps.

Table 2 shows the size of the reduced FSA
(minimal FSA) versus the size of the OCC graph in
terms of the number of nodes and arcs and the
number of terminal states. It also shows the number
of service primitive sequences (ie service language),
which can be accepted by the FSA.

2 see http://www.research.att.com/sw/tools/fsm.
3 see http://www.research.att.com/sw/tools/fsm/doc.

Visual inspection of the minimal FSA is difficult
given the size of the automata and the number of
sequences accepted. In order to increase confidence
that the service specification is behaving as expected,
partial analysis was carried out by generating the FSA
for only some sequences. For example, figure 8
shows the FSA for the reservation setup sequences
where change and release service primitives have not
been taken into account. The only terminal state is
represented by a double circle in the FSA. A service
primitive sequence starts in node 0 and finishes in
node 5 (ie terminal node). The following sequences
can be found in the FSA:

1. RSVPSenderReq(SndReq),
RSVPSenderInd(SndInd),
RSVPReserveReq(RsvReq), RSVPResvErrorInd
(RerInd);

2. RSVPSenderReq(SndReq),
RSVPSenderInd(SndInd),
RSVPReserveReq(RsvReq),
RSVPReserveInd(RsvInd),
RSVPResvConf(RCfInd);

3. RSVPSenderReq(SndReq),
RSVPSenderErrorInd(SErInd).

They correspond to the intuition what should
happen.

CONCLUSIONS

In this paper, a service specification for RSVP has
been presented. The proposed service specification
was also modelled using Coloured Petri Nets. Initial
analysis of the model showed that it worked as
expected. This analysis was based on the study of
behavioural properties and the use of a well-known
analysis technique called state space exploration. The
state space or OCC graph was employed to generate
the service language. Since Design/CPN does not
support explicit generation of the language, the FSM
tool was used instead. It required a simple conversion
from the state space to the file format accepted by
FSM. Then, the FSA was reduced using a well-
known reduction technique. Since, inspection of all
the sequences accepted by the minimal FSA is
difficult given the size of the service language, partial
analyses were carried out.

Future work includes comparing the service
specification presented in this paper with the protocol

Figure 8: Minimal FSA for reservation setup service primitive sequences

OCC graph Minimal FSA
Nodes 880 106
Arcs 3391 434
Final States 4 1
Service Primitive
Sequences

- 20406

Table 2: OCC graph vs minimal FSA

specification in (Villapol et al. 2000).
Finally, the proposed service specification will

allow other resource reservation protocols to be
developed that satisfy this service.

ACKNOWLEDGMENT

This work was carried out with financial support from
the Commonwealth of Australia through the
Cooperative Research Centres Program.

REFERENCES
Barret W. and Couch J. Compiler

construction: theory and practice. Science
Research Associates, Chicago, 1979.

Billington J. and M.C. Wilbur-Ham. "Automated
Protocol Verification". Protocol Specification,
Testing, and Verification. M. Diaz (editor).
Elsevier Science Publisher, 1986 pp 59-70.

Braden R., et al. "Resource Reservation Protocol
(RSVP) -- Version 1: Functional Specification".
RFC 2205, IETF, September, 1997.

Comer D. Internetworking with TCP/IP: Principles,
Protocols, and Architecture. Vol. 1, Prentice
Hall, 4th Edition, 2000.

Durham D. and Yavatkar R. Inside the Internet’s
Resource Reservation Protocol. Wiley, USA,
1999.

Gordon S. and Billington J. “Analysing the WAP
Class 2 Wireless Transaction Protocol Using
Coloured Petri Nets". Proceedings of 21st

International Conference, ICATPN 2000,
Aarhus, Denmark, June 2000, pp 207-226.

ITU-T “Convention for the Definition of OSI
Services”. Recommendation X.210. 1994.

 Jensen K. Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Vol. 1,2 ,
and 3, Springer-Verlag, April, 1997.

Kristensen L.M., Christensen S., and Jensen K. "The
practitioner's guide to Coloured Petri Nets".
International Journal on Software Tools for
Technology Transfer, Springer, 1998, Vol. 2,
Number 2, pp 98-132.

Meta Software Corporation. Design/CPN Reference
Manual for X-Windows, Version 2, Meta
Software Corporation, Cambridge, 1993.

Villapol M.E. and Billington J. “Modelling and Initial
Analysis of the Resource Reservation Protocol
using Coloured Petri Nets”, Proceedings of the
Workshop on Practical Use of High-Level Petri
Nets, Aarhus, Denmark, June 27, 2000, pp 91-
110.

BIOGRAPHIES

Maria Elena Villapol completed a Graduate study in
Computer Science (with Magna Cum Laude Mention)
from Universidad Central de Venezuela (Venezuela)
in 1991. From 1991 to 1992, she worked in one of the
four Venezuelan Petroleum Companies (LAGOVEN)
as a System Analyst in the Department of Information
Technology. In 1992, she joined to Universidad

Central de Venezuela as a full-time lecturer and
researcher. In 1996, she completed a Master of
Computer Science from this University. In 1996, she
obtained a scholarship from the same University to
study in Australia. In 1998, she finished a Master of
Digital Communication from Monash University
(Australia). Currently, she is a PhD candidate at the
University of South Australia, within the Cooperative
Research Centre for Satellite Systems. Her research is
based on the Modelling and Analysis of the Resource
Reservation Protocol (RSVP) using formal methods.

Jonathan Billington has B.E. and MEngSc degrees
from Monash University, Australia and a PhD from
the University of Cambridge,UK. After working for
Adelaide University, he spent 15 years with Telecom
Australia Research Laboratories, where he led a team
developing protocol engineering tools and techniques.
Jonathan is Professor of Computer Systems
Engineering at the University of South Australia and
the Director of the Computer Systems Engineering
Centre, where he leads a group researching
distributed and concurrent systems. He has consulted
to various companies and government agencies and is
currently editor of ISO/IEC 15909 on High-level
Petri nets.

