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  Abstract 
 
The goal of the Resource Reservation Protocol (RSVP) is to establish Quality of Service information in the form of 
resource reservations (such as buffers and bandwidth) within routers and host computers of the Internet. It is 
intended to support emerging Internet applications that require performance guarantees. Currently, Internet protocols 
are not formally specified when they are developed. Instead they are described in a narrative way in documents 
called Request for Comments (RFCs). This is the case for RSVP. To increase confidence in RSVP we have 
formalised and analysed its narrative specification using Coloured Petri Nets (CPNs). This paper demonstrates how 
CPNs can be used for modelling and analysing RSVP. Among the several beneficial features of CPNs are: graphical 
facilities for specification; support for different levels of abstraction; hierarchical structuring mechanisms; and 
verification and validation methods, such querying the state space to investigate properties, and language 
equivalence to check the consistency of different levels of abstraction. These facilities allow us to create a model, 
that provides a clear, unambiguous and precise definition of RSVP, and to analyse the protocol for functional 
correctness. The paper concentrates on the approach and the tools used in this investigation. 
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1 Introduction 
 
The Internet Integrated Service Model (IntServ) [3] is one of the proposals for providing the desired Quality of 
Service (QoS) for applications operating over the Internet. QoS guarantees are required for multimedia and real-time 
applications. The Resource Reservation Protocol (RSVP) [4][5] is part of the IntServ model. RSVP is a signalling 
protocol developed to create and maintain resource reservations (eg buffer and data rate allocations) in Internet 
routers and host computers, to provide the desired QoS. RSVP uses a soft-state approach, where state information 
concerning traffic characteristics and resource reservations must be periodically refreshed, or else face automatic 
removal. For the desired QoS to be guaranteed it is essential that RSVP works correctly.  
 
Formal methods provide techniques to support the design and maintenance of communication protocols [1][14]. We 
have found that formal techniques have been seldom applied to Internet protocols. Some of this work has been 
focused on TCP [9][15], Internet Open Trading Protocol (IOTP) [12] and RSVP (which includes our own work 
[18]). Coloured Petri Nets (CPNs) [8] are a formal technique used for modelling many systems, particularly 
communication protocols [2]. The work presented here is based on an extensive investigation of RSVP mechanisms 
using CPNs [20]. Part of the contribution of this work has been a clear, unambiguous and precise definition of the 
major features of the protocol, which is missing in the current specification of RSVP [4]. The aims of this paper are 
to show how CPNs can be used to create a model of RSVP and to analyse the model using state spaces [8] and their 
associated Strongly Connected Component (SCC) graphs [8]. The paper also explains the standard behavioural 
properties of CPNs and their application to the analysis of RSVP. Our investigation is supported by a software tool 
called Design/CPN [11]. 
 
The paper has been organised as follows. Section 2 presents an overview of RSVP, which includes its characteristics 
and operation. Section 3 summarises the major steps of the methodology we use for the specification and analysis of 
RSVP. The methodology requires the definition of a set of RSVP Service Primitives, and these are given in Section 
4. Section 5 gives an informal introduction to the components, dynamic behaviour and hierarchical structuring 
mechanism of CPNs, illustrated by part of the CPN model of  RSVP. We assume the reader is familiar with basic 
Petri Net notation. Section 6 describes the state space method and its application to the analysis of the model of 
RSVP. Section 7 describes the standard properties of CPNs and how they can be used to demonstrate that the 
protocol works as expected. Finally, Section 8 concludes the paper. 
  
2 Resource Reservation Protocol (RSVP) Overview 
 
RSVP is designed to be run on network routers and in end hosts to support QoS applications. It reserves resources 
for a data flow from the sender to one or more destinations (i.e. a multicast destination). A data flow is a 
distinguishable packet stream, which results from using a single application (such as video conferencing) requiring a 
certain QoS. A packet stream includes all packets that travel from the same source to the same destination. Unlike 
other signalling protocols [5], RSVP destinations (receivers) request resource reservations. Those requests travel on 
the reverse path of the data flow by following the pre-established route setup by RSVP [4]. RSVP is also responsible 
for maintaining reservations on each node associated with the data flow.  RSVP uses a soft-state approach where the 
reservation states must be refreshed periodically; otherwise they are automatically removed. The approach 
accommodates dynamic route changes, dynamic multicast group membership and dynamic QoS changes [4]. RSVP 
reserves resources for a session. A session includes all data flows from one or more senders to the same unicast (one 
receiver) or multicast destination (multiple receivers). 
 
RSVP reservation requests are defined in terms of a filter specification (filter spec) and a flow specification (flow 
spec) [4][5]. A filter spec is used to identify the data flow that is to receive the QoS specified in a flow specification. 
A flow spec defines the desired QoS in terms of a service class, which comprises a Reservation Specification 
(RSpec), and a Traffic Specification (TSpec). A RSpec defines the reservation (i.e.. desired QoS) characteristics of 
the flow, for example, the service rate the application requests. A TSpec defines the traffic characteristics of the 
flow, for example, the peak data rate.  
 
RSVP uses several messages in order to create, maintain, and release state information for a session between one or 
more senders and one or more receivers as shown in Figure 1. We now describe the main RSVP features, structured 
to facilitate the description to the model. 
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Figure 1: RSVP messages 

 
a. Path Setup: In RSVP, reservation requests travel from receivers to the sender(s), in the opposite direction to 

the user data flow for which such reservations are being requested. Thus, Path messages are used by the sender 
to set up a route to be followed by the reservation requests, which uses the same routers as the corresponding 
data flow. These messages travel downstream and set up and maintain path state information (eg the Internet 
Protocol address of the previous router and the data flow’s traffic characteristics). 

 
b. Path Refresh: Path and reservation states have two timers associated with them: a refresh timer and a cleanup 

timer. A refresh timer determines when a path or reservation refresh message will be generated. The cleanup 
timer determines the maximum period of time that a node (i.e. router or host) can wait to receive a path or 
reservation refresh message, before it removes the associated state information. A path refresh is the result of 
either a path refresh timeout or a user request to modify the path state. Once a path is established, a node sends 
path refresh messages (i.e. Path messages) periodically (i.e. every refresh timeout period [4]). 

 
c. Path Error: A node that detects an error in a Path message, generates and sends a PathErr message upstream 

towards the sender that created the error. It travels hop-by-hop to the sender and does not modify any path state 
at the nodes through which it passes. Once the sender receives the PathErr message, it can report the error to 
the application, which may take corrective action. 

 
d. Path Release: RSVP tear down messages are intended to speed up the removal of path and reservation state 

information from the nodes. They may be triggered because a cleanup timeout occurs or an application wishes 
to finish a session. A PathTear message travels downstream from a sender to the receiver(s) and deletes any 
path state information and dependent resource reservation associated with the session and sender. 

 
e. Reservation Setup: Resv messages carry reservation requests (eg for bandwidth and buffers) used to set up 

reservation state information along the route of the data flow. They travel upstream from the receiver(s) to the 
sender(s). Reservation requests, which arrive at a router, may be merged. The aim of merging is to control the 
overhead of reservation messages by making them carry more than one flow and filter specification [4]. Thus, 
the effective filter and flow specifications, which are carried in a reservation message, are the result of merging 
reservations from several requests.  

 
f. Reservation Refresh: A reservation refresh is the result of either a reservation state refresh timeout or a 

receiver request to modify the reservation. Like path states, reservation states need to be refreshed. Thus, a 
receiver periodically sends reservation refresh messages (i.e. Resv messages) to the sender.  

 
g. Reservation Release: ResvTear messages travel from the receiver(s) to the sender and remove any reservation 

state information associated with the receiver’s data flow.  
 
h. Reservation Error: If a node detects an error in a Resv message, it sends a ResvErr message downstream to 

the receiver that generated the failed Resv message. Processing ResvErr messages will not result in the removal 
of any reservation state.  

 
i. Reservation Confirmation: Optionally, a receiver may ask for confirmation of its reservation. A ResvConf 

message is used to notify the receiver that the reservation request was successful. In the simplest case, a 
ResvConf message is generated by the sender (Figure 1).  

 
3 Protocol Verification Methodology 
 
Verification of RSVP firstly requires a formal specification of the protocol and the service it is intended to supply to 
its users [1]. This is set in the context of a protocol architecture, which in the case of RSVP, is given by the IntServ 
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architecture [3]. A service specification [7] defines a set of events, known as  service primitives (see Section 4), and 
their possible sequences at the interfaces between the users (an application or higher level protocol entity) and the 
service provider (comprising the protocol entities concerned and their communication mechanisms). RSVP [4] does 
not include an explicit service specification, but it does include an application interface from which the RSVP 
service specification [19][20] has been derived, taking into account the features of the protocol specification. A 
Protocol Specification formally describes the features of the protocol that provide the required service. RFC 2205 
[4] provides the source document from which the RSVP formal model is derived. Both the service and protocol 
specifications are defined using Coloured Petri Nets. 
 
Once the service and protocol specifications are defined, the protocol can be analysed for general properties and 
specific properties defined for RSVP. It can also be compared with the service specification, to see if the sequences 
of primitives defined in the service specification are preserved in the protocol specification.  
 

4 RSVP Service Primitives 
 
Service primitives [7] provide an abstract way to describe the interaction between the RSVP service user (i.e. QoS-
aware application) and the RSVP service provider. A QoS-aware application interacts with RSVP to request 
reservation services. Since the RSVP specification [4] does not define the RSVP service, the authors [19][20] 
recently defined a set of service primitives for RSVP. They are used in the CPN model and in the definition of the 
desired RSVP properties.  
 
Each primitive can be either a request or an indication. A request (Req) is used by the application to ask for a service 
from RSVP. An indication (Ind) is used by RSVP to notify the application of the invocation of a request primitive 
by its peer or to notify the user that the RSVP service provider detected an error or to confirm reservations. We have 
defined the following service primitives [20].  
 
a. RSVP-Sender (Req/Ind): a sender application uses this primitive to establish or update the traffic 

characteristics of a data flow for a RSVP session.  
b. RSVP-Reserve (Req/Ind): a receiver application uses this primitive to establish or to modify a resource 

reservation during a session. 
c. RSVP-SenderRel (Req/Ind): a sender application uses this primitive to close a session. This means that the 

user data flow will eventually not have any QoS reserved.  
d. RSVP-ReceiverRel (Req/Ind): a receiver application uses this primitive to close a quality controlled session. 
e. RSVP-ResvConf (Ind): is used by the service provider to confirm that a reservation has been made. 
f. RSVP-SenderError (Ind): is used by the service provider to report an error in propagation or installation of 

the Sender’s traffic characteristics. 
g. RSVP-ResvError (Ind): is used by the service provider to report a reservation failure inside the network. 
 
5 Coloured Petri Net Modelling 
 
Coloured Petri Nets (CPNs) [8][10] provide compact descriptions of concurrent systems by including abstract data 
types within the basic Petri net framework. We describe CPNs and how they can be used for modelling RSVP 
through an example [20]. The example is based on RSVP’s path management features (i.e. path setup, refresh, error 
and release) for a sending protocol entity, as shown in Figure 2. 
 
5.1 Places 
 
In Figure 2, there are four places drawn as ellipses. The Sender place stores the state of the sending protocol entity. 
The places SOutgoingMsgs and SIncomingMsgs store RSVP messages travelling downstream and upstream, 
respectively. Finally, the place SenderUser represents the sending application which requires RSVP services. Each 
place has an associated type which is written in italics at the top right of the place. Place types are defined in a set of 
declarations shown in Figure 3. For example, place Sender is typed by SenderState, defined at the top of Figure 3. 
 
A Marking of a place defines a collection of data values, known as tokens, that are associated with that place. The 
value is taken from the type of the place. This collection of tokens is a multi-set, since it may contain several tokens 
of the same value. CPNs also include the initial state of the system, called the initial marking. The initial marking (if 
not the empty multi-set) is written near each place. In the initial marking of the example, the place SenderUser 
contains the requested traffic characteristics, in this case, 1’Ta. Each communication place is empty (hence there is 
no inscription). The state place Sender contains a triple comprising null entries for path and reservation information 
and SESSION for the status of the sender. 
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Figure 2: Path management. 

5.2 Transitions 
 
Transitions represent atomic events of the system. They are drawn as rectangles in Figure 2. They may also have 
guards associated with them, which are included in square brackets. Guards are Boolean expressions which are 
important for describing CPN dynamics and are discussed later in this section. There are five transitions in the 
example. The transition RSVPSenderReq models the establishment or updating of path state information and the 
occurrence of the service primitive RSVP-Sender.Req. The transition PathRfrTimeOut models periodic path 
refreshes required to maintain path state information. The RSVPSenderRelReq transition models the action taken 
when the sender user leaves the session on the occurrence of the service primitive RSVP-SenderRel.Req. The 
transition RSVPSenderErrorInd represents an occurrence of the service primitive RSVP-SenderError.Ind. Finally, 
DiscardError removes path error messages that are not reported to the application. 
  
5.3 Arcs 
 
Arcs connect transitions and places and are represented by arrows. A transition may have input places connected by 
incoming arcs and output places connected by outgoing arcs. Arcs have expressions associated with them. The 
expressions are built from constants, variables and functions and are written next to their associated arcs. The 
functions are defined, and the constants and variables declared, in the set of declarations (see  Figure 3). 
 
5.4 Declarations 
 
Type definitions, variables, and functions are defined in what is called the global declaration node of a CPN. Parts 
of the global declaration node, including the definitions that are relevant to Figure 2, are shown in Figure 3. They 
are written in the functional programming language ML [13]. The variant used in Design/CPN, known as CPN ML, 
has some special key words. Here colour is used to denote a type. The declarations are divided into 4 sections. 
 
States of RSVP Entities. ParameterValues is an enumeration type, which represents abstract values for both the 
traffic specification (tspec) and flow specification (fspec) parameters. The possible values are Ta, Tb, Fa, Fb and E 
(empty). The types, STSpec and SFSpec, are subsets of ParameterValues and represent the traffic specification 
stored as part of the path state information and the flow specification stored as part of the reservation state 
information, respectively. Status is an enumerated type, which defines the states of the RSVP entities as follows: 
 
a. SESSION: the sender or receiver has opened a session, but no path or reservation has yet been established.  
b. IDLE: there exists neither path nor reservation information at the router. 
c. WAITINGRESV: a request with the Sender’s traffic information has been accepted by the entity (i.e. sender, 

router or receiver) and sent (if the entity is not the receiver) but as yet no reservation request has been received. 
d. RESVREADY: a reservation request has been accepted and sent (if the entity is not the Sender).  
e. RESVCONFIRMED: a reservation has been established and a confirmation has been received. 
f. CLOSED: the sender or the receiver has left the session. 
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SenderStatus only requires four of these states and is a subset of Status. SenderState represents the states of the 
sender and is the product of SenderStatus, STSpec and SFSpec. The Sender place has the type SenderState. 
 
RSVP Messages. TSpec and FSpec, represent the parameters that may be carried in RSVP messages [4] and are the 
traffic specification and flow specification respectively. TearMsgType is intended to distinguish between: a 
PathTear message generated as a result of the sender or receiver leaving the session (REL); or a path or reservation 
cleanup time-out (TEARDOWN). The other seven RSVP messages defined in Section 2 are represented by 
UpstreamMessages and DownstreamMessages. The places SOutgoingMsgs and SIncomingMsgs are typed by 
DownstreamMessages and UpstreamMessages, respectively.  
 
Variables and Functions. The variables used in CPN inscriptions are typed in the declarations. As an example, the 
variable sta represents the status of the RSVP entity (e.g. the sender). The function pathexists is used to simplify 
guard inscriptions and returns true if the sender has path state information available. 
 

(* ============= States of RSVP entities =========== *) 
 
color ParameterValues     = with E|Ta|Tb|Fa|Fb; 
color STSpec              = subset ParameterValues with [E,Ta,Tb]; 
color SFSpec              = subset ParameterValues with [E,Fa,Fb]; 
color Status              = with SESSION|IDLE|WAITINGRESV|RESVREADY|      

     RESVCONFIRMED|CLOSED; 
color SenderStatus        = subset Status with [SESSION,WAITINGRESV,RESVREADY,CLOSED]; 
color SenderState         = product SenderStatus * STSpec * SFSpec; 
 
(* ================= RSVP Messages ================= *) 
 
color TSpec               = subset ParameterValues with [Ta,Tb]; 
color FSpec               = subset ParameterValues with [Fa,Fb]; 
color TearMsgType         = with TEARDOWN|REL; 
color ResvTear            = product TearMsgType * FSpec; 
color PathTear            = product TearMsgType * TSpec; 
color UpstreamMessages    = union patherror: TSpec + resvtear: ResvTear + resv: FSpec; 
color DownstreamMessages  = union path: TSpec + resverror: FSpec + resvconf: FSpec +  

   pathtear: PathTear; 
 
(* ================    Variables    ================= *)  
 
var sta: Status; 
var tspec,tspec1: STSpec; 
var fspec,fspec1: SFSpec; 
 
(* =================   Functions ==================== *) 
 
fun pathexists (sn) = (sn= WAITINGRESV orelse sn=RESVREADY orelse sn = RESVCONFIRMED);  

 
Figure 3: Part of the global declaration of the RSVP model. 

 
5.5 Enabling and Occurrence of Transitions 
 
Arcs are inscribed with expressions written in ML. Transitions can be enabled and can then occur. A transition is 
enabled if its input places have the required tokens and its guard is true. These enabling requirements are 
determined by binding the transition’s variables to values taken from their types. The choice of binding value is 
arbitrary. The required tokens are defined by evaluating the input arc expressions for a particular binding of the 
variables. This same binding is used for evaluating the guard. The occurrence of a transition removes tokens from 
the input places and adds tokens to the output places. The removed tokens are defined by the evaluated expressions 
on the corresponding incoming arcs for this binding of variables, while the values of the added tokens are 
determined by evaluating the arc expressions on the corresponding outgoing arcs for the same binding. Hence 
transitions can occur in different modes, depending on the bindings of the variables. 
 
For example, in Figure 2, RSVP-Sender.Req is enabled when the Sender is not CLOSED (see the guard), and a new 
tspec is waiting to be sent in SenderUser. An occurrence of the transition RSVP-Sender.Req updates the tspec to the 
one requested by the user (ie to Ta). If the status of the sender is equal to SESSION, it is also updated so that it 
indicates that the sender is ready to receive a reservation request (WAITINGRESV). If not, the state of the sender is 
only updated by the new tspec value Ta.  In addition, Ta is removed from the place SenderUser and a Path message 
carrying the corresponding tspec = Ta, is added to the SOutgoingMsgs place.  
 



 7

5.6 Hierarchical CPNs 
 
We deal with RSVP’s complexity by using the hierarchical constructs of CPNs [8][10]. Hierarchies are built using 
the notion of a substitution transition, which may be considered a macro expansion. The model starts with a top-
level CPN diagram, which provides an overview of the system being modelled and its environment. In hierarchical 
CPNs, this top-level diagram will contain a number of substitution transitions. Each of these substitution transitions 
is then refined by another CPN diagram, which may also contain substitution transitions. The top-level diagram and 
each of the substitution transitions is defined by a module, called a page. The relationships between the different 
pages are defined by a hierarchy page. The hierarchy page also includes the name of the page that defines the 
declarations required for the CPN inscriptions, called the Global Declaration node (see Section 5.4). 
 
The hierarchy page of the RSVP CPN model consists of eleven (11) pages as illustrated in Figure 4. The top-level 
page is called RSVPNetwork, which describes the network topology  and interaction with the applications that use 
RSVP. The network topology consists of one sender and one receiver connected by a router (Figure 1). This page is 
the main one (i.e. prime page) and includes substitution transitions for the Sender, Router and Receiver, which are 
defined by their own pages. These in turn also comprise substitution transitions for Path and Reservation 
management, which are defined at the lowest level of the hierarchy. These correspond with the major functions of 
RSVP described in Section 2. The Path and Resv management pages include transitions that model the 
establishment, refreshment, release and error control of paths and reservations, respectively. Also included is the 
Global Declaration node (Page 11). Each page at the lowest level of the hierarchy uses transitions to model service 
primitives and protocol actions, which include implementing RSVP functions (eg path refresh) or discarding 
messages that cannot be processed. The Sender Path Management page is given in Figure 2. The description of the 
other pages can be found in [20]. 
 

RSVPNetwork#1 M Prime

Hierarchy#10

Sender#2

GlobalDec#11

SenderResvManagement#4

SenderPathManagement#3

Receiver#8

RouterPathManagement#6

Router#5

ReceiverResvManagement#10

ReceiverPathManagement#9

RouterResvManagement#7

ResvManagement

PathManagement

PathManagement

ResvManagement

ResvManagement

PathManagement

Router

Receiver

Sender

 
Figure 4: Hierarchy page of the RSVP CPN model. 

 
6 Analysis of CPNs 
 
6.1 Modifying the CPN Model for Analysis 
 
To analyse the CPN model we employ state space methods [8]. An Occurrence Graph can be generated using 
Design/CPN [16]. It includes all possible markings that can be reached from the initial marking and is represented 
by a directed graph where the nodes represent the markings and the edges the occurring binding elements 
comprising the CPN transition and the assignment to the transition’s variables. 
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The CPN model of RSVP can generate an infinite state space when path and reservation refreshes are included (e.g. 
see transition PathRfrTimeOut in Figure 2), since an arbitrary number of RSVP messages can be in the 
communication places (e.g. SOutgoingMsgs). The first step towards analysing the CPN model is to ensure that its 
state space is finite. This can be achieved by limiting the number of refreshes that can occur (which we consider to 
be a severe limitation on the operation of RSVP) or by limiting the storage capacity of the communication network. 
Given that storage in the network is finite, this is a more realistic option. We thus modify the model so that the 
communication places have finite capacity.  
 
The types, DownstreamMessages and UpstreamMessages, are modified to include a no message value. Figure  5 
illustrates how the Path Management page (see Figure 2) has been modified to limit the capacities of the 
communication places using the notion of empty message slots. The Sender can send a message to the network, (e.g. 
see transition RSVPSenderReq) if SOutgoingMsgs contains a token indicating the presence of an empty slot (i.e. 
1’nodmsg (N)). Also, when the sender receives a message (e.g. see transition RSVPSenderErrorInd) it adds a token 
representing an empty slot (i.e. 1`noumsg (N)) to SIncomingMsgs. We also modify the model to ensure that the 
sequence of requests for traffic specification changes by the sender user is maintained, by using a list type. In 
addition, we have incorporated the transition RSVPSenderRelReq2, which has the same functionality as the 
transition RSVPSenderRealReq, however its occurrence does not depend on the availability of a token on the 
SOutgoingMsgs place. In other words, when there is no state information at the Sender, it can leave the session 
without sending any PathTear message to the network. 
 

SenderState

Sender

P I/O

1‘(SESSION,E,E)

RSVPSenderReq

[sta <> CLOSED]

DownstreamMessages

SOutgoingMsgs

1‘nodmsg N

                                  
Sender: Path Management

TSpecList

SenderUser

1‘[Ta]

PathRfrTimeOut

[pathexists (sta)]

RSVPSenderRelReq

[pathexists(sta)]

UpstreamMessages

SIncomingMsgs
1‘noumsg N

RSVPSenderErrorInd

[pathexists(sta)]

DiscardError

[pathexists(sta)=false orelse
tspec<>tspec1 ]

RSVPSenderRelReq2

(sta,tspec1,fspec)

if sta = SESSION then
   (WAITINGRESV,tspec,fspec)
else
   (sta,tspec,fspec)

path (tspec)

tspec::tspeclist

(sta,tspec,fspec)

path (tspec)

(sta,tspec,fspec)

(CLOSED,E,E)

1‘pathtear (USER_REL,tspec)

(sta,tspec,fspec)

(sta,tspec1,fspec)

patherror (tspec)

patherror (tspec)

nodmsg (N)

nodmsg (N)

nodmsg (N)

noumsg (N)

noumsg (N)

(CLOSED,E,E)

tspeclist

(SESSION,tspec,fspec)

 
Figure  5: Modified Path Management page. 

 
6.2 State Space Analysis 
  
Figure 6 shows the state space for our model of RSVP when the above changes are incorporated into the Router and 
Receiver parts of the model. To obtain a small state space suitable for presentation we have restricted the model to 
only include the basic features of path and reservation establishment. Our aim here is to provide an illustration of the 
approach, rather than the full analysis, for which the reader is referred to [20]. 
 
There are nineteen (19) reachable markings (or nodes), represented by rounded boxes in the figure. Each marking 
has an identification number located at the top. Also, there are two numbers separated by a colon (“:”), which 
represent the number of input and output arcs, respectively. The node at the top of the figure  is the initial marking 
and has the identification number 1. 
 
The details of each of the markings can be obtained easily from Design/CPN and are shown in the dashed boxes 
next to the nodes for the initial marking and for each of the terminal markings (leaf nodes). For example, in the 
initial marking (i.e. node 1): the Router is idle (IDLE,E,E) and the Sender and Receiver are in the same session 
(SESSION,E,E); each of the communication places (SIncomingMsgs, ROutgoingMsgs, SOutgoingMsgs and 
RIncomingMsgs) has an empty slot (i.e. 1`noumsgs (N) or 1`nodmsgs (N)); and the SenderUser is ready to provide 
its traffic characteristics (1`[Ta]) while the ReceiverUser desires that a reservation (1`[Fa]) be made.  
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An arc represents the occurrence of a binding element. The details of binding elements can be shown on the arcs, 
which we have done for several of them. Also included is the identification number of the arc (located in the upper 
left corner) and the related node numbers (n1->n2, indicates that the marking n2 is reached from marking n1 when 
the binding element occurs). For example, the binding element 1 (represented by the arc 1) is the only one enabled 
in the initial marking. It includes the transition RSVPSenderReq and the bindings: tspeclist = [] (no more sender 
requests), tspec1= E (no traffic information installed at the sender),  tspec =Ta (the sender informs RSVP of the 
required traffic characteristics equal to Ta), sta = SESSION (the status of the sender is SESSION), fspec = E (no 
reservation information is installed at the sender). 
 

1 
0:1 1

Router’Router 1: 1‘(IDLE,E,E)
Receiver’Receiver 1: 1‘(SESSION,E,E)
Sender’Sender 1: 1‘(SESSION,E,E)
RSVPNetwork’SOutgoingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’SIncomingMsgs 1: 1‘noumsg(N)
RSVPNetwork’RIncomingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’ROutgoingMsgs 1: 1‘noumsg(N)
RSVPNetwork’SenderUser 1: 1‘[Ta]
RSVPNetwork’ReceiverUser 1: 1‘[Fa]

2 
1:2

3 
1:2

4 
1:1

7 
1:0

7
Router’Router 1: 1‘(IDLE,E,E)
Receiver’Receiver 1: 1‘(SESSION,E,E)
Sender’Sender 1: 1‘(WAITINGRESV,Ta,E)
RSVPNetwork’SOutgoingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’SIncomingMsgs 1: 1‘noumsg(N)
RSVPNetwork’RIncomingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’ROutgoingMsgs 1: 1‘noumsg(N)
RSVPNetwork’SenderUser 1: 1‘[]
RSVPNetwork’ReceiverUser 1: 1‘[Fa]

5 
1:1 6 

1:1

9 
1:2

8 
1:1

11 
1:212 

1:1

10 
1:0

10
Router’Router 1: 1‘(WAITINGRESV,Ta,E)
Receiver’Receiver 1: 1‘(SESSION,E,E)
Sender’Sender 1: 1‘(WAITINGRESV,Ta,E)
RSVPNetwork’SOutgoingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’SIncomingMsgs 1: 1‘noumsg(N)
RSVPNetwork’RIncomingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’ROutgoingMsgs 1: 1‘noumsg(N)
RSVPNetwork’SenderUser 1: 1‘[]
RSVPNetwork’ReceiverUser 1: 1‘[Fa]

15 
1:0

15
Router’Router 1: 1‘(WAITINGRESV,Ta,E)
Receiver’Receiver 1: 1‘(RESVREADY,Ta,Fa)
Sender’Sender 1: 1‘(WAITINGRESV,Ta,E)
RSVPNetwork’SOutgoingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’SIncomingMsgs 1: 1‘noumsg(N)
RSVPNetwork’RIncomingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’ROutgoingMsgs 1: 1‘noumsg(N)
RSVPNetwork’SenderUser 1: 1‘[]
RSVPNetwork’ReceiverUser 1: 1‘[]

13 
1:1

14 
1:1

17 
1:116 

1:1

19 
1:0 19

Router’Router 1: 1‘(RESVREADY,Ta,Fa)
Receiver’Receiver 1: 1‘(RESVCONFIRMED,Ta,Fa)
Sender’Sender 1: 1‘(RESVREADY,Ta,Fa)
RSVPNetwork’SOutgoingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’SIncomingMsgs 1: 1‘noumsg(N)
RSVPNetwork’RIncomingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’ROutgoingMsgs 1: 1‘noumsg(N)
RSVPNetwork’SenderUser 1: 1‘[]
RSVPNetwork’ReceiverUser 1: 1‘[]

18 
1:0

18
Router’Router 1: 1‘(RESVREADY,Ta,Fa)
Receiver’Receiver 1: 1‘(RESVREADY,Ta,Fa)
Sender’Sender 1: 1‘(WAITINGRESV,Ta,E)
RSVPNetwork’SOutgoingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’SIncomingMsgs 1: 1‘noumsg(N)
RSVPNetwork’RIncomingMsgs 1: 1‘nodmsg(N)
RSVPNetwork’ROutgoingMsgs 1: 1‘noumsg(N)
RSVPNetwork’SenderUser 1: 1‘[]
RSVPNetwork’ReceiverUser 1: 1‘[]

1:1->2
SenderPathManagement’RSVPSenderReq 1: 
{tspeclist=[],tspec1=E,tspec=Ta,
sta=SESSION,fspec=E}

2:2->3
RouterPathManagement’PathEstablished 1: 
{tspec1=E,tspec=Ta,sta=IDLE,fspec=E}

5:3->6
ReceiverPathManagement’RSVPSenderInd 1:
 {tspec1=E,tspec=Ta,sta=SESSION,fspec=E}

8:6->9
ReceiverResvManagement’RSVPReserveReq 1: 
{tspec=Ta,sta=WAITINGRESV,fspeclist=[],
fspec1=E,fspec=Fa}

10:9->11
RouterResvManagement’ResvEstablished 1:
 {tspec=Ta,sta=WAITINGRESV,fspec1=E,
fspec=Fa}

12:11->13
SenderResvManagement’ResvSetupFailed 1:
 {tspec=Ta,sta=WAITINGRESV,fspec1=E,
fspec=Fa}

13:11->14
SenderResvManagement’RSVPReserveInd 1: 
{tspec=Ta,sta=WAITINGRESV,fspec1=E,
fspec=Fa}

16:14->17
RouterResvManagement’ResvConfirmation 1: 
{fspec=Fa}

15:13->16
RouterResvManagement’ResvError 1:
 {tspec=Ta,fspec=Fa}

18:17->19
ReceiverResvManagement’RSVPResvConfInd 1: 
{tspec=Ta,sta=RESVREADY,fspec1=Fa,
fspec=Fa}

17:16->18
ReceiverResvManagement’RSVPResvErrorInd 1:
 {tspec=Ta,sta=RESVREADY,fspec=Fa}

 
Figure 6: State space of the example. 

 
In Figure 6, the path defined by the node sequence 1,2,3,6,9,11,14,17,19 shows the sequences of events leading to 
the successful establishment of a reservation, while the path 1,2,3,6,11,13,16,18 illustrates an event sequence where 
the reservation is not set up in the sender. The Sender couldn’t establish the reservation (see arc 12) because, for 
example, it didn’t have enough resources to satisfy the request. The other leaf nodes of the graph (7, 10 and 15)  
represent situations where the path is not established (7,10), or the reservation fails (15). The terminal nodes show 
that the completion of RSVP execution satisfies the following expected conditions: RSVP finishes in a state where 
all the message buffers are empty (represented by the tokens noumsgs (N) and nodmsgs (N)) and a path state has not 
been installed in at least one of the RSVP entities because the sender request has failed in one RSVP node, so no 
reservation exists (i.e. the RSVP entity, e.g. the Router, is not in the WAITINGRESV state) (e.g. see node 7). 
Alternatively, a reservation state has not been established in at least one of the RSVP entities (i.e. it is not in the 
RESVREADY or RESVCONFIRMED state) because the reservation request has failed in one RSVP node (e.g. see 
node 15); or a reservation state has been set up in all RSVP entities along the route of the data flow (i.e. they are in 
the RESVREADY or RESVCONFIRMED sate) (see node 19). 
  
The size of the state space is increased as we increase the capacity of the buffers because the content of the 
communications places can have more than one message. In addition, the messages may be processed by the RSVP 
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entities in an arbitrary order. It is also increased when we include more features of RSVP. For example, when the 
Path and Resv refreshes are activated in the model, the state space has 281 nodes and 1049 arcs [20]. This is because 
both Path and Resv messages can be in the network simultaneously. This is not possible in the current model with 
the given initialisation because the Receiver must wait until it receives the first Path message to generate and send a 
reservation request, and only one Resv and one Path can be generated and sent to the network. 
 
6.3 Strongly Connected Components 
 
A Strongly Connected Component (SCC) of the occurrence graph is a maximal sub-graph, whose nodes are mutually 
reachable from each other [8]. A SCC graph has a node for each SCC and arcs that connect each SCC with other 
SCCs. A SCC without incoming arcs is called the initial SCC, and a SCC without outgoing arcs is called a terminal 
SCC. Each node in the state space belongs to only one SCC, so the SCC graph will never have more nodes than the 
corresponding occurrence graph (OG).   
 
The SCC graph of the OG of Figure 6 will be the same as Figure 6, as it contains no cycles. To illustrate a non-
trivial SCC graph we generate an OG for a RSVP model in which path refreshes are generated at the sender but no 
reservation request is sent by the receiver. The full state space has 20 nodes and 21 arcs, while the SCC graph has 6 
nodes and 13 arcs as shown in Figure 7. Node number ~1 is the initial SCC. Terminal SCC nodes are indicated by 
solid boxes (i.e. nodes ~4 and ~6). Each SCC node has information about the number of nodes and arcs, which 
comprise the associated SCC. The number of OG arcs from one SCC node to another, is indicated next to the SCC 
graph arc. For example, node ~2 comprises four markings (OG nodes) and 5 OG arcs, one input arc and two output 
arcs to SCC node ~3.  
 

   ~1
#Nodes: 1
#Arcs:  0

   ~2
#Nodes: 4
#Arcs:  5

   ~3
#Nodes: 4
#Arcs:  7

   ~4
#Nodes: 4
#Arcs:  7

   ~5
#Nodes: 4
#Arcs:  7

   ~6
#Nodes: 4
#Arcs:  7

1

2

2

44

 
Figure 7: Example illustrating a SCC graph. 

 
In the RSVP model the cycles indicated by the SCC graph are the result of refreshes. Terminal SCC nodes represent 
protocol sequences that can be executed indefinitely, possibly without making effective progress (i.e. livelocks 
exist). Thus they must be checked to see if these sequences are expected. In this case, these sequences must 
correspond to either successful path establishment or to a path establishment attempt that failed at the receiver. The 
terminal SCC sequences can be easily checked using standard Design/CPN functions [11] that are provided to 
explore OG nodes included in a SCC node. We have checked them (see [20]) and they are as expected. 
 

7 Behavioural Properties of Coloured Petri Nets 
 
This section introduces in an informal way the main behaviour or dynamic properties of CPNs and how they can be 
used for RSVP model analysis. They describe the expected behaviour of the model. More details about these 
properties and their formal definitions can be found in [8]. 
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7.1 Reachability  
 
By convention, Mn denotes the marking of node number n. Mn is reachable from M1 if there is an occurrence 
sequence from marking M1 to Mn. We have defined a set of desired properties that describe the expected behaviour 
of RSVP [20]. These are so called safety properties, which we have checked by establishing that the desired 
markings are reachable.  
 
For example, an important property of RSVP is Resv Setup, which is defined as follows. If the RSVP-Reserve.Req 
service primitive occurs, RSVP should be able to establish or update a reservation along the route of the data flow, 
unless the sender has left the session before the reservation request is sent. Also, the corresponding path state 
information must exist at all RSVP nodes along the route of the data flow before the reservation is established. In 
Figure 6, we see that the reservation request primitive occurs in marking 6, and that the property is satisfied by 
marking 19. We see that marking 19 is reachable from marking 9 (the resultant marking on the occurrence of the 
Reservation request in marking 6) by the following sequence of markings: 9,11,14,17,19.  
 
As the size of the state space increases, it is not possible to verify these safety properties using visual inspection. We 
developed the algorithm Reachable [20] to check if multiple nodes can reach at least one of the nodes in a list, since 
the in-built function provided by Design/CPN [11] only checks the reachability of one node from another. The 
algorithm is used to check RSVP’s safety properties such as the Resv Setup property just explained. 
 
7.2 Boundedness  
 
The upper and lower integer bounds indicate the maximum and minimum number of tokens that can be located on 
each place in the reachable markings. For example, they are useful for detecting unbounded communication buffers. 
In Figure 6, the upper and lower bounds for the communication places are 1. This means that each of these places 
can either contain one message or an empty slot (represented by the token nodmsg (N)or noumsg (N)).  
 
The other concept related to boundedness properties is multi-set bounds. They provide information about the value 
of the tokens that the places can carry. The upper multi-set bound of a place is defined as the smallest multi-set 
which is larger than or equal to all reachable markings of the place [16]. The lower multi-set bound of a place is 
defined as the largest multi-set which is smaller than or equal to all reachable markings of the place. For example, 
the best upper multi-set bound of the place Sender is: 1`(SESSION,E,E)++ 1`(WAITINGRESV,Ta,E)++ 
1`(RESVREADY,Ta,Fa). This indicates that the Sender can be in all the defined states (see Section 5.4) except for 
CLOSED because the sender release feature (i.e. the transition RSVPSenderRel in Figure 2) has been switched off. 
 
7.3 Home Markings 
 
A home marking is a marking that can always be reached from all other reachable markings. In Figure 6, it can be 
seen that there is no home marking. A home space is a set of markings such that from each reachable marking, it is 
possible to reach at least one of these markings. Although there is no home marking in this model, the markings 
M7,M10,M15,M18 and M19 form a home space. This means that the protocol can always finish in an expected state 
(see Section 6.2). 
 
7.4 Deadlock-Freeness 
 
A dead marking is a marking with no enabled binding elements. In Figure 6, M7,M10,M15,M18 and M19 are dead 
markings, however they are expected (see Section 6.2) and hence are not deadlocks from an RSVP perspective. 
 
7.5 Dead Transitions 
 
A dead transition is not enabled in any reachable marking. When generating the state space shown in Figure 6, we 
have deactivated several transitions to make the state space small. For example, the refresh transitions, such as 
PathRfrTimeOut (see Figure  5), do not occur in the example, so they are dead transitions. Dead transitions represent 
code of the protocol, which is never executed. This situation is not acceptable, so the dead transitions must be 
analysed to see if they are the result of a modelling problem or a protocol specification problem.  
 
8 Conclusions 
 
In this paper, we have shown how RSVP can be formalised and analysed using CPNs. It summarises part of our 
effort for formally specifying and analysing RSVP [20].  We have described the protocol in a graphical way using 
the features of CPNs. The hierarchical structuring mechanism of CPNs allows us to identify the major entities 
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involved in the architecture (i.e. a sender, receiver and router), to describe the major modules that form the protocol 
(e.g. path and reservation management) and to describe the network topology considered in the example (i.e. one 
sender and one receiver connected by a router). Since CPN models are executable, we could investigate the 
behaviour of RSVP using simulations. The state space method of CPNs is used to verify and validate the model 
against a set of behavioural properties. The facilities provided by CPNs (and Design/CPN) allow us to create a 
model that provides a clear, unambiguous and precise definition of RSVP, and to check the protocol for correctness.  
 
The main limitation found during the analysis of RSVP is that of state space explosion [17]. The problem with very 
large state spaces is that they cannot be generated with limited computer memory and if they can, they may be 
difficult to analyse. To make the analysis feasible we have limited the scope of the model, for example, we have 
only considered a very simple network topology and excluded some of RSVP’s functionality such as merging. 
 
We have managed to analyse RSVP under set of simplifying assumptions [20]. The analysis results have shown that 
the protocol works as expected under these assumptions. Future work in this area will attempt to relax some of these 
assumptions and may include modelling other features of RSVP (eg merging), more complex network topologies 
and inclusion of network imperfections such as message loss and/or duplication.  
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