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In this work we propose the use of alternating oblique projections (AOP) for the solution of
the saddle points systems resulting from the discretization of domain decomposition problems.
These systems are called coupled linear systems. The AOP method is a descent method in
which the descent direction is defined by using alternating oblique projections onto the search
subspaces. We prove that this method is a preconditioned simple gradient (Uzawa) method
with a particular preconditioner. Finally, a preconditioned conjugate gradient based version of
AOP is proposed.
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1. Problem definition

We are interested in the system of linear equations:(
A BT

B 0

)(
x

λ

)
=

(
f

0

)
, (1)

where

H1. B ∈ �m×n is a matrix with rank(B) = m, m � n,

H2. A ∈ �n×n is a symmetric positive definite matrix.

Proposition 1.1. Under the hypotheses H1, H2 the system (1) has a unique solution
(x, λ)T which satisfies: {

f − Ax ⊥ ker B,

x ∈ ker B.
(2)
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Proof. Under hypotheses H1, H2 the system(
A BT

0 BA−1BT

) (
x

λ

)
=

(
f

BA−1f

)
, (3)

is equivalent to (1) and BA−1BT is a positive definite matrix. Consequently the sys-
tem (1) has a unique solution. This solution x verifies f − Ax = BTλ ⊥ ker B. �

Let V be the linear variety defined by

V = {x/f − Ax ⊥ ker B}. (4)

Under the hypotheses H1, H2, the solution (x, λ)T of (1) is such that x is the only element
in the intersection of V and ker B,

{x} = V ∩ ker B. (5)

Let xu = A−1f , the system (2) becomes{ ∀y ∈ ker B, 〈A(xu − x), y〉 = 0,

x ∈ ker B.
(6)

When A is a symmetric positive definite matrix, the mapping {x, y} �→ 〈Ax, y〉 is a
scalar product denoted by 〈.,.〉A and the system (1) is equivalent to:{

xu = A−1f,

xu − x ⊥A ker B,

x ∈ ker B.

(7)

It means that x is the orthogonal projection of xu = A−1f onto ker B, in the sense of the
scalar produit 〈.,.〉A. The notation xu −x ⊥A ker B means 〈xu −x, y〉A = 0, ∀y ∈ ker B.
In this case we can write the linear variety as V = {xu} + (ker B)⊥A .

2. Alternating oblique projections

From this point on we assume the hypotheses H1, H2. All the subsequent theoret-
ical results are based on those two hypotheses. But, in practice, the resulting methods
will be only used when:

• the computational cost of solving Ay = b is reasonable, and

• the orthogonal projection P onto ker B is easily obtained.

We shall concentrate on the second point.

Definition 2.1 (AOP method). We define the alternating oblique projections method as,{
x0 ∈ V,

xk+1 = xk + αkdk,
(8)
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with

dk = Q̃Pxk − xk, (9)

where

• the descent direction dk is an approximation of ek = x − xk,

• αk is the stepsize,

• P is the orthogonal projection matrix onto ker B,

• Q̃ is a projection matrix onto the linear variety V .

The orthogonal projection onto the linear variety V = xu + ker B⊥A is very ex-
pensive to calculate because this involves computing the orthogonal projection R =
A−1BT(BA−2BT)−1BA−1 onto ker B⊥A . Hence, we propose to use the oblique projec-
tion Q̃ onto V defined by

∀y ∈ �n, Q̃y := A−1Pf + Qy, (10)

where {
R = I − P, the orthogonal projection matrix onto (ker B)⊥,

Q = A−1RA,
(11)

thus

Q̃y = A−1Pf + A−1(I − P)Ay (12)

= A−1P(f − Ay) + y. (13)

Lemma 2.1. Under the hypotheses (H1), Q = A−1RA satisfies,

1. Q2 = Q, thus Q is a projection,

2. ∀y ∈ �n, Qy⊥A ker B,

3. ∀y ∈ �n, (y − Qy) ⊥A (ker B)⊥.

Proof.

Q2 = A−1RAA−1RA = A−1R2A = A−1RA,

Qy = A−1RAy, then AQy = RAy ∈ (ker B)⊥ and Qy ∈ (ker B)⊥A,

y − Qy = A−1PAy, thus A(y − Qy) = PAy ∈ ker B,

then A(y − Qy) ⊥ ker B⊥

and, finally,

(y − Qy) ⊥A ker B⊥. �

Comments. It is easy to verify that Q̃ is a projection onto V . Moreover (f − AQ̃y) ⊥
ker B and Q̃2 = Q̃.
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3. Analysis of the method

M1. We analyze the following method:
Initialization
x0 ∈ V

iterations: for k = 0, 1, . . . do

• dk = −A−1RARxk

• αk = 〈−xk, dk〉A/〈dk, dk〉A = −〈Adk, xk〉/〈Adk, dk〉
• xk+1 = xk + αkdk

end

In lemma 3.1, item 4, we will show that M1 is equivalent to the AOP method given
by (8) and (9).

3.1. Properties

Lemma 3.1. Under hypotheses H1, H2, method M1 satisfies: for all k � 0,

1. dk ∈ ker B⊥A ,

2. xk ∈ V ,

3. 〈Adk, dk〉 = 0 ⇔ xk = x; thus the sequence is stationary,

4. dk = Q̃Pxk − xk, then method M1 becomes the AOP method given by (8) and (9).

Proof. 1. We have

dk = −A−1RARxk, (14)

then

Adk = −RARxk ∈ (ker B)⊥ ⇒ ∀y ∈ ker B, 〈Adk, y〉 = 0

⇔ dk ∈ (ker B)⊥A.

2. Let

x0 ∈ V ; (15)

by induction, we suppose xk ∈ V . As dk ∈ (ker B)⊥A then αkdk ∈ (ker B)⊥A therefore
xk+1 ∈ V .

3. 〈Adk, dk〉 = 0 ⇒ dk = 0 because A is symmetric definite positive,

⇒ RARxk = 0

⇒ 〈ARxk, Rxk〉 = 0

⇒ Rxk = 0

⇒ xk = Pxk
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⇒ xk ∈ ker B and xk ∈ V

⇒ xk = x,

and the sequence is stationary.
If xk = x then Rxk = 0, which implies dk = 0 and 〈Adk, dk〉 = 0.
4. We have

Q̃Pxk − xk = A−1Pf + A−1RAPxk − xk, (16)

which implies

A
(
Q̃Pxk − xk

) = Pf + RAPxk − Axk

= Pf + RAxk − RARxk − Axk

= Pf − PAxk − RARxk

= P(f − Axk) − RARxk,

but f − Axk ⊥ ker B because xk ∈ V , thus P(f − Axk) = 0 therefore,

A
(
Q̃Pxk − xk

) = −RARxk = Adk, (17)

finally,

Q̃Pxk − xk = dk. (18)
�

Lemma 3.2. Under hypotheses H1, H2, method M1 satisfies: for all k � 0,

1. 〈x, dk〉A = 0,

2. 〈ek, dk〉A = 〈−xk, dk〉A, with ek = x − xk,

3. 〈ek+1, dk〉A = 0,

4. 〈ek, dk〉A = ‖Rxk‖2
A.

Proof. 1. We have x ∈ ker B thus 〈Adk, x〉 = 0 by lemma 3.1, item 1.
2. By definition,

〈ek, dk〉A = 〈x − xk, dk〉A = 〈x, dk〉A − 〈xk, dk〉A, (19)

but 〈x, dk〉A = 0 thus,

〈ek, dk〉A = 〈−xk, dk〉A. (20)

3. Next

〈ek+1, dk〉A = 〈ek, dk〉A − αk〈dk, dk〉A
= −〈xk, dk〉A + 〈xk, dk〉A = 0.

So in this method, αkdk is the projection of ek onto dk, thus it is an error projection
method (cf. [15]).
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4. Finally,

〈ek, dk〉A = 〈−xk, Adk〉
= 〈−xk, −RARxk〉
= 〈Rxk, ARxk〉
= ‖Rxk‖2

A. �

Lemma 3.3. Under hypotheses H1, H2, method M1 satisfies: for all k � 0,

1. ‖ek+1‖2
A = ‖ek‖2

A − ‖Rxk‖4
A/‖dk‖2

A = ‖ek‖2
A − α2

k‖dk‖2
A,

2. ‖ek+1‖A � ‖ek‖A,

3. ‖ek+1‖A = ‖ek‖A iff x = xk.

Proof. 1. We have

‖ek+1‖2
A = 〈ek+1, ek − αkdk〉A

= 〈ek+1, ek〉A by the lemma 3.2, item 3.

Thus

‖ek+1‖2
A = ‖ek‖2

A − αk〈ek, dk〉A; (21)

by substituting αk = 〈−xk, dk〉A/〈dk, dk〉A and by the use of lemma 3.2, item 4, we have,

‖ek+1‖2
A = ‖ek‖2

A − 〈xk, dk〉2
A

〈dk, dk〉A
= ‖ek‖2

A − ‖Rxk‖4
A

‖dk‖2
A

= ‖ek‖2
A − α2

k‖dk‖2
A.

2. As corollary of part (1),

‖ek+1‖A � ‖ek‖A. (22)

3. From (1)

‖ek+1‖A = ‖ek‖A ⇒ ‖Rxk‖A = 0, (23)

but

‖Rxk‖A = 0 ⇒ Rxk = 0 ⇒ xk ∈ ker B. (24)

From lemma 3.1, item 2, xk ∈ V , then xk ∈ ker B ∩ V and, finally, xk = x. �

Lemma 3.4. Under hypotheses H1, H2 and if ek = 0, method M1 satisfies: for all
k � 0,

1. ‖ek+1‖A = ‖ek‖A

√
1 − ρ2

k , where ρk = ‖Rxk‖2
A/(‖dk‖A‖ek‖A),
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2. ρk � (‖Rxk‖A/‖ek‖A)(1/‖Q‖A), where Q = A−1RA is the oblique projection into
(ker B)⊥A .

3. ‖Rxk‖A/‖ek‖A � 1,

4. ‖ek+1‖A � ‖ek‖A

√
1 − ρ2, where ρ = 1/‖Q‖A > 0. Then the method converges.

Proof. 1. From lemma 3.3, item 1, we have for ek = 0,

‖ek+1‖2
A = ‖ek‖2

A

[
1 − ‖Rxk‖4

A

‖dk‖2
A‖ek‖2

A

]
, (25)

thus,

‖ek+1‖A = ‖ek‖A

√
1 − ρ2

k , (26)

where ρk = ‖Rxk‖2
A/(‖dk‖A‖ek‖A).

Remark. By lemma 3.2, item 4

‖Rxk‖2
A

‖dk‖A‖ek‖A

= 〈ek, dk〉A
‖dk‖A‖ek‖A

= cos 
A(ek, dk). (27)

2. We have

‖dk‖A = ∥∥A−1RARxk

∥∥
A

� ‖Q‖A‖Rxk‖A (28)

and

ρk � ‖Rxk‖A

‖ek‖A

1

‖Q‖A

. (29)

3. We write

‖Rxk‖2
A = ‖xk − Pxk‖2

A

= ‖xk − x‖2
A + ‖x − Pxk‖2

A + 2〈xk − x, x − Pxk〉A.

But x ∈ ker B and Pxk ∈ ker B and xk − x ⊥A ker B. Thus

‖Rxk‖2
A − ‖ek‖2

A = ‖x − Pxk‖2
A, (30)

hence

‖Rxk‖2
A � ‖ek‖2

A ⇒ ‖Rxk‖A � ‖ek‖A (31)

and, finally,

‖Rxk‖A

‖ek‖A

� 1. (32)

Remark. This result gives us one practical criterion for stopping the algorithm. We can
use ‖Rxk‖A � ε, ε > 0 to stop it and we guarantee that ε � ‖Rxk‖A � ‖ek‖A.
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4. From parts 2 and 3 we choose

ρk � ρ = 1

‖Q‖A

> 0, (33)

thus

‖ek+1‖A � ‖ek‖A

√
1 − ρ2, (34)

and method M1 converges. �

4. Relationship with Uzawa’s method

The Uzawa method preconditioned by any matrix Q−1
B is written as:


λ0 ∈ �m,

xk = A−1
(
f − BTλk

)
,

λk+1 = λk + αkQ
−1
B Bxk.

(35)

From (35) we have

xk+1 = A−1
(
f − BTλk+1

)
, (36)

but

λk+1 = λk + αkQ
−1
B Bxk, (37)

thus, by substitution,

xk+1 = A−1
(
f − BTλk − αkB

TQ−1
B Bxk

)
(38)

= A−1
(
f − BTλk

) − αkA
−1BTQ−1

B Bxk (39)

= xk − αkA
−1BTQ−1

B Bxk. (40)

We choose the preconditioning matrix Q−1
B = (B+)TAB+ ≈ (BA−1BT)−1 = S−1,

where B+ = BT(BBT)−1 is the pseudoinverse of B. This matrix approaches the inverse
of the Schur complement matrix S = BA−1BT of the system (1). Hence by (40), the
preconditioned Uzawa method becomes

xk+1 = xk − αkA
−1BTQ−1

B Bxk (41)

= xk − αkA
−1BT(B+)TAB+Bxk, (42)

but B+B = R (cf. [11]) thus,

xk+1 = xk − αkA
−1RARxk (43)

= xk + αkdk, (44)

with the descent direction dk = −A−1RARxk , which coincides with the AOP method
proposed in definition 2.1. Therefore, the AOP method is equivalent to using the Uzawa
method preconditioned by Q−1

B = (B+)TAB+.
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From (35), we get the approximation error of λk which comes from (cf. [4])

Ek+1
λ = λ − λk+1 = (

I − αkQ
−1
B S

)
Ek

λ, (45)

and with the choice αk = 〈−xk, zk〉/〈dk, zk〉 the AOP method proposed in M1, we min-
imize ‖Ek+1

λ ‖S in the descent direction dk (the same choice of αk is frequently used for
the Uzawa method in symmetric case).

5. Acceleration of the conjugate gradient method

If the matrix A is symmetric positive definite, the preconditioning matrix Q−1
B =

(B+)TAB+ satisfies:

• (Q−1
B )T = (B+)TAB+ = Q−1

B , thus the matrix is symmetric.

• ∀x ∈ �m: 〈x, Q−1
B x〉 = ‖B+x‖A. Hence, if 〈x, Q−1

B x〉 = 0, then ‖B+x‖A = 0 and
B+x = 0. When the range of B is maximal then x = 0 and the preconditioning
matrix is positive definite.

Hence, we propose here to accelerate the conjugate gradient method applied to the
condensed system BA−1BTλ = BA−1f , with this preconditioner.

5.1. The preconditioned conjugate gradient algorithm

We write here the preconditioned conjugate gradient algorithm with Q−1
B =

(B+)TAB+. We take advantage of the relation BTQ−1
B Bxk = BT(B+)TAB+Bxk =

RARxk:

1. Initialization:

• x0 ∈ V

• w0 = RARx0

• y0 = w0

2. Iteration: For k = 0, 1, . . . , Do

• dk = A−1yk

• αk = 〈xk, wk〉/〈dk, yk〉
• xk+1 = xk − αkdk

• wk+1 = RARxk+1

• βk+1 = 〈xk+1, wk+1〉/〈xk, wk〉
• yk+1 = wk+1 + βk+1yk

3. End
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Remark. Note that:

• The algorithm does not explicitly need to calculate either λk or the vector residual.

• The right-hand side f occurs in the choice of the initial vector x0 ∈ V = {x/f −
Ax ⊥A ker B}.

6. Numerical experiments

6.1. Introduction

In this section we describe the results obtained when solving system (1), arising
from the domain decomposition method applied to the Poisson equation:{ −�u = f in �,

u = 0 on ∂�,
(46)

where � is a bounded rectangular domain of R
2. Let ∂� be its boundary and f a given

function.
The domain � is subdivided into four subdomains �i , i = 1, . . . , 4, separated

by one interface 	. We define the matrices Ai , i = 1, . . . , 4, each one corresponding
to the discretization of (46) independently in each subdomain �i , i = 1, . . . , 4. This
discretization is carried out with the help of the 5 point-stencil on a uniform grid with
ni × ni nodes. The matrix A is then defined from the matrix Ai as:


A1 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A4


 . (47)

A is a block diagonal matrix which satisfies hypothesis H2.
The matrix B is related to the matching condition on the interface 	. B is a “cou-

pling” matrix in the sense of the definition proposed in [11]. We subdivide 	 into subin-
terfaces 	ij , i, j = 1, . . . , 4, defined as the part of the interface 	 which separates the
subdomains �i and �j ; thus, the matrix B is formed by the matrix Bij related to the
matching condition on the interface 	ij . The matrix Bij comes from the discretization
of the coupling condition

∀vi ∈ Vi, vj ∈ Vj , wij ∈ Wij :
∫

	ij

(vi − vj )wij dx = 0, (48)

where

• vi is the trace of the local solution defined in the subdomain �i on 	ij ,

• Vi = {vi ∈ H ′(�i); vi |∂�= 0} is the space where this local solution is defined,

• wij is a test function in a proper subspace Wij = H−1/2(	ij ).
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Figure 1. Decomposition of domain �.

Thus, in the discretization, the matrix Bij expresses a condition of the type:

∀vi ∈ V h
i , vj ∈ V h

j , wij ∈ Wh
ij :

∫
	ij

(vi − vj )wij dx = 0. (49)

For the numerical experiments we have chosen the following space

V h
i = [{



(i)
k

}ni

k=1

]
the space generated by

{



(i)
k

}ni

k=1, (50)

where

• ni is the number of nodes on the interface 	 coming from the subdomain �i .

• Let {x(j)

k }nj

k=1 be the nodes of the interface which corresponds to the subdomain �j .
The functions 


(j)

k , j = 1, . . . , 4; k = 1, . . . , nj are defined by



(j)

k (x) =




x − x
(j)

k−1

x
(j)

k − x
(j)

k−1

if x ∈ [
x

(j)

k−1, x
(j)

k

]
,

x
(j)

k+1 − x

x
(j)

k+1 − x
(j)

k

if x ∈ [
x

(j)

k , x
(j)

k+1

]
,

0 elsewhere

(51)

for j = 2, . . . , nj − 1,



(j)

1 (x) =



x
(j)

2 − x

x
(j)

2 − x
(j)

1

if x ∈ [
x

(j)

1 , x
(j)

2

]
,

0 elsewhere

(52)
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Figure 2. Function 

(j)
i

.

and


(j)
nj

(x) =




x − x
(j)

nj −1

x
(j)
nj − x

(j)

nj −1

if x ∈ [
x

(j)

nj −1, x
(j)
nj

]
,

0 elsewhere.

(53)

For Wh
ij we choose the space which has the smallest dimension between V h

i and V h
j ,

the nodes being distributed uniformly on the interface of each subdomain.

Remark. The mesh in each �i can be independent.

6.2. Results

We compare the performance of the AOP method, and the CG preconditioned with
the AOP method (CG-AOP) for system (1) with the following methods:

• Uzawa,

• Conjugate Gradient (CG),

• Conjugate Gradient Preconditioned by Q−1
B = BABT (CG-Schur) (cf. [13]),

• GMRES preconditioned by the Skew-Hermitian Splitting Iteration (HSS) recently
proposed by Benzi and Golub that depends on a parameter α > 0 [2,3].

The vector f of (1) corresponds to the exact solution of equation (46): u(x, y) =
sin(K1πx) sin(K2πy) + 3, with K1 = 1.7, K2 = 2.3. The experiments correspond to
the so-called conforming case where n1 = n2 = n3 = n4.

All our experiments were run on a Pentium IV using MATLAB 6.1.

6.2.1. Comparison of the methods
Figures 3, 4, 5 show the evolution of ‖Rxk‖2 in relation to the number of iteration,

in the case where ni = 10, 20, 30, respectively, for the following methods: Uzawa, CG,
AOP, CG-AOP.

Comments. The CG-AOP method provides the best convergence results in all the exper-
iments carried out. The convergence rate of the CG-AOP method is clearly superior to
those of the other methods.
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Figure 3. Value of ‖Rxk‖ for the problem with ni = 10, i = 1, . . . , 4.

Figure 4. Value of ‖Rxk‖ for the problem with ni = 20, i = 1, . . . , 4.

Figures 6 and 7 compares the evolution of ‖Rxk‖2 for the GC-AOP method with
GMRES preconditioned by the HSS iteration (Benzi–Golub) for ni = 20 and ni = 30,
respectively, and for α = 10−2, 10−3, 10−4 and 10−5, as suggested in [17].
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Figure 5. Value of ‖Rxk‖ for the problem with ni = 30, i = 1, . . . , 4.

Figure 6. Value of ‖Rxk‖ for the problem with ni = 20, i = 1, . . . , 4.
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Figure 7. Value of ‖Rxk‖ for the problem with ni = 30, i = 1, . . . , 4.

Comments.

• For ni = 20 (n = 1600 and m = 80) the GC-AOP clearly outperforms the HSS
methods for any choice of α. We also observe in figure 6 that the HSS iteration has a
similar behavior for 10−5 � α � 10−2.

• For ni = 30 (n = 3600 and m = 120) the best result is obtained by the HSS iteration
when α = 10−5. Nevertheless, it is interesting to observe that for any choice of α

the HSS method shows a significant reduction at some specific iteration but it tends
to stagnate before and after that iteration. On the other hand, the GC-AOP method
tends to reduce ‖Rxk‖2 uniformly during the whole process. This feature seems to
be convenient for inner–outer schemes, associated to nonlinear problems (e.g., KKT-
matrix for nonlinear programming), in which low precision in very few iterates is
highly recommendable. Interesting discussions on the choice of the parameter α for
the HSS method can be found in [2,17].

Value of ‖Rx‖2. Figures 8, 9, 10 show the value of ‖Rx‖2 for the CG-AOP method
with ni = 10, 20, 30, i = 1, . . . , 4. These figures indicate the efficiency of the CG-AOP
method in the solution of the coupled linear system solution (1). This does not take into
account the discretization error by domain decomposition. Here we realize that the value
of ‖Rxi‖2 is higher on the interfaces, but the order of these values is still quite small.
Thus allowing us to validate the efficiency of the method in the solution of the coupled
linear system (1).
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Figure 8. ‖Rx‖2 for the CG-AOP method with ni = 10, i = 1, . . . , 4.

Figure 9. ‖Rx‖2 for the CG-AOP method with ni = 20, i = 1, . . . , 4.
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Figure 10. ‖Rx‖2 for the CG-AOP method with ni = 30, i = 1, . . . , 4.

Trace on the interface. Figures 11, 12 show the evolution of the trace error in 10 iter-
ations of the CG-AOP method with ni = 10, 20, 30. In figure 11 we show the error on
the 	13 and 	24 interfaces. Figure 12 shows the error on the interfaces 	12 and 	34. Here
we still realize that if the number of nodes increases, the approximation has improved.
The difference between the horizontal trace and the vertical trace is due to the fact that
the form of the error is similar to that of the exact solution. We recall that this solution
is given by u(x, y) = sin(K1πx) sin(K2πy) + 3, with K1 = 1.7 and K2 = 2.3, thus the
vertical trace is different from the horizontal trace.

7. Conclusions

The results of the experiments presented in this work show that the AOP method is
competitive with recent methods, and has some interesting new features. The iteration
cost of AOP depends on the cost of the P projection onto the kernel of B. In some cases,
as in the case of domain decomposition, the matrix B has a particular structure that can
be used to compute P at a reasonable cost (cf. [11]). In this case, the AOP method is a
valuable tool for solving the coupled linear systems.

As a continuation of this research, we would like to:

• Experiment with this method on non-conforming cases.

• Compare the computational time of several methods for parallel machines.

• Extend the experiments to several subdomains.

• Extend the alternating oblique projections idea to nonsymmetric matrices.
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Figure 11. The vertical cut shows the error e10 on the interface for the CG-AOP method.

Figure 12. The horizontal cut shows the error e10 on the interface for the CG-AOP method.
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