
Specialized and hybrid Newton schemes for the matrix pth

root

Braulio De Abreu ∗ Marlliny Monsalve † Marcos Raydan ‡

June 15, 2006

Abstract
We discuss different variants of Newton’s method for computing the pth root of a

given matrix. A suitable implementation is presented for solving the Sylvester equa-
tion, that appears at every Newton’s iteration, via Kronecker products. This approach
is quadratically convergent and stable, but too expensive in computational cost. In
contrast we propose and analyze some specialized versions that exploit the commuta-
tion of the iterates with the given matrix. These versions are relatively inexpensive
but have either stability problems or stagnation problems when good precision is re-
quired. Hybrid versions are presented to take advantage of the best features in both
approaches. Preliminary and encouraging numerical results are presented for p = 3
and p = 5.

1 Introduction

Consider the nonlinear matrix equation

F (X) = Xp − A, (1)

where A ∈ C
n×n has no eigenvalues on the closed negative real axis, and p is a positive

integer. A solution X of (1) is called a matrix p-th root of A. This problem appears
for instance as a useful tool in the calculation of matrix logarithms [3, 8], and also for
computing the matrix sector function [12, 16]. The problem of computing the square root
(p = 2) has received significant attention [2, 4, 5, 7, 9, 13], and the general case has also
been considered [1, 14, 15, 17]. In this work we pay special attention to the computational
issues associated with Newton’s method for computing (1).

∗Departamento de Matemáticas, Facultad de Ingenieŕıa, Universidad de Carabobo, Valencia, Venezuela
(bdeabreu@thor.uc.edu.ve). Supported by the CNU Alma Mater Scholarship program.

†Departamento de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47002,
Caracas 1041-A, Venezuela (mmonsalv@kuaimare.ciens.ucv.ve). Supported by the Scientific Computing
Center at UCV.

‡Departamento de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47002,
Caracas 1041-A, Venezuela (mraydan@kuaimare.ciens.ucv.ve). Supported by the Scientific Computing
Center at UCV.

1

2 Classical Newton’s method

Newton’s method for finding the roots of F : C
n×n → C

n×n is given by the following
iterative scheme

Xk+1 = Xk − F ′(Xk)−1F (Xk), k = 0, 1, . . .

where F ′ denotes the Fréchet derivative of F , and X0 is given. In order to obtain F ′,
consider the expression for F (X + H), where H is an arbitrary matrix

F (X + H) = (X + H)p − A

= (Xp − A) +
p−1∑
i=0

Xp−1−iHXi + O(H2)

Now, recalling the Taylor series for F about X, F (X + H) = F (X) + F ′(X)H + R(H),
where R(X) is such that

lim
‖H‖→0

‖R(H)‖
‖H‖ = 0,

we observe that F ′(X) is the linear operator given by

F ′(X)H =
p−1∑
i=0

Xp−1−iHXi.

Therefore, the classical Newton’s method, starting at X0, can be written as

Algorithm 1 (Newton’s method for the matrix p-th root)
For k = 0, 1, 2, . . .

Solve
∑p−1

i=0 Xp−1−i
k HkX

i
k = A − Xp

k (for Hk)

Set Xk+1 = Xk + Hk

end end

The classical local convergence analysis for Newton’s method guarantees that, under stan-
dard assumptions, if X0 is sufficiently close to a p-th root of A, then the sequence generated
by Algorithm 1 converges q-quadratically to that cubic root of A. On the negative side,
we need to solve the linear matrix equation for Hk at every iteration of algorithm 1. For
that we can use the Kronecker product and solve the following standard linear system
instead⎡

⎣(I ⊗ Xp−1
k) +

p−2∑
q=1

(
(Xq

k)T ⊗ Xp−q−1
k

)
+

(
(Xp−1

k)T ⊗ I
)⎤
⎦ vec(Hk) = vec(A − Xp

k) (2)

where I represents the n × n identity matrix, and vec(X) : C
n×n → C

n2
is given by

vec(X) = (xt
1 xt

2 · · · xt
n)t where xj ∈ C

n represents the j−th column of X. In here,
we are using the well-known properties of the Kronecker product (see [6]), vec(XBX) =
(XT ⊗ X)vec(B) and vec(XB + BX) = (I ⊗ X + XT ⊗ I)vec(B).

2

The linear system (2) can be solved by means of many different well-known iterative
or direct method. However, it involves n2 equations and n2 unknowns, and so the compu-
tational cost is very expensive. It can be simplified and the computational cost reduced
by using the Schur factorization of the matrix Xk as described below. Instead of solving
(2) we propose to solve at every k, the following linear system⎡

⎣(I ⊗ Rp−1
k) +

p−2∑
q=1

(
(Rq

k)
T ⊗ Rp−q−1

k

)
+

(
(Rp−1

k)T ⊗ I
)⎤
⎦ vec(Yk) = vec(C̃k) (3)

where Xk = QkRkQ
T
k (Schur factorization), Yk = QT

k HkQk, and C̃k = QT
k (A − Xp

k)Qk.
The advantage of this new and equivalent formulation is that the coefficient matrix in

(3) is block lower triangular, and each block, denoted by Sk
ij , is upper triangular. Hence,

(3) can be solved using the next back substitution algorithm.

Algorithm 2 (Back substitution)

Solve Sk
11y

k
1 = ck

1

For m = 2, 3, · · · , n do

bm = ck
m − ∑m−1

j=1 Sk
mjy

k
j

Solve Sk
mmyk

m = bm by back substitution

End
where yk

j and ck
j are the j−th columns of Yk and C̃k respectively.

Consequently, using the Schur factorization of Xk, Newton’s method can be written as

Algorithm 3 Given X0

For k=0,1,2...

[Qk, Rk] =Schur(Xk)

Set C̃k = QT
k (A − Xp

k)Qk

Solve (3) for Yk using algorithm 2

Set Hk = QkYkQ
T
k

Xk+1 = Xk + Hk

End

The structure of the coefficient matrix in (3) is shown in Figure 1.

Notice that solving (3) for Yk using algorithm 2, as required in algorithm 3, does not
need the explicit construction of the coefficient matrix, and this represents a significant
reduction in storage. It is clear that this new formulation has a lot of potential for parallel
implementations. It can also be observed, in Figure 1, that the algorithm only needs to

3

Figure 1: Structure of the coefficient matrix in (3)

build the Sk
mj blocks, 1 ≤ j ≤ m, one at a time for sequential implementations. Indeed,

the Sk
ij blocks can be dynamically built as follows

Sk
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p−2∑
q=1

(rk
ji)

qRp−q−1
k + diag(tkji) if i �= j

p−2∑
q=1

(rk
ii)

qRp−q−1
k + diag(tkii) + Rp−1

k if i = j

where (rk
ji)

q represents the ij−th position Rq
k and tkij represents the ij−th position of

R
(p−1)
k for j ≥ i.

3 Specialized versions

If Xk commutes with A, then Hk commutes with Xk, and Xk+1 will also commute with
A. As we will see later, these events can be guaranteed for some special initial choices
X0. Under these circumstances the system to be solved at every iteration, of the classical
Newton’s method, can be simplified as follows

p(Xp−1
k Hk) = A − Xp

k ,

and so,
Hk = (AX1−p

k − Xk)/p.

After some simple manipulations, where the commutativity between A and X−1
k is also

exploited, we obtain three different specialized (or simplified) versions:

4

(I) : Yk+1 =
1
p

[
Y

(1−p)
k A + (p − 1)Yk

]
(4)

(II) : Zk+1 =

⎧⎪⎨
⎪⎩

1
p

[
Z

(1−p)/2
k AZ

(1−p)/2
k + (p − 1)Zk

]
for p odd

1
p

[
Z

−p/2
k AZ

−p/2
k + (p − 1)I

]
Zk for p even

(5)

(III) : Wk+1 =
1
p

[
AW

(1−p)
k + (p − 1)Wk

]
(6)

We now establish an important result concerning the commutativity of the involved
matrices when the iterates are well-defined, i.e., when the Fréchet derivative, F ′(Xk), is
nonsingular at each k. It is motivated by Theorem 1 in [4].

Theorem 1 Consider iterations (I),(II), and (III), and also the scheme described in algorithm
1. Suppose that X0 = Y0 = Z0 = W0 commute with A, and that all the Newton iterates Xk are
well-defined. Then

1. XkA = AXk for all k,

2. XkSk = SkXk for all k,

3. Xk = Yk = Zk = Wk for all k.

Proof. We will prove the theorem for p odd. For p even, the arguments can be followed
almost verbatim. The first part will be established by induction. If k = 0, AX0 = X0A
by assumption. Suppose that AXk = XkA, which implies that X−1

k A = AX−1
k . Let

Gk =
1
p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk.

]
We have that

F ′(Xk)Gk =
p−1∑
q=0

X
(p−q−1)
k GkX

q
k

=
1
p

p−1∑
q=0

X
(p−q−1)
k

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
Xq

k =
1
p

p−1∑
q=0

[
X

(p−2q−1)/2
k AX

(1−p)/2
k − Xp−q

k

]
Xq

k

=
1
p

p−1∑
q=0

[
X

(p−2q−1)/2
k AX

(−p+2q+1)/2
k − Xp

k

]
=

1
p

p−1∑
q=0

[
X

(p−2q−1)/2
k X

−(p−2q−1)/2
k A − Xp

k

]

=
1
p

p−1∑
q=0

[
A − Xp

k

]
= A − Xp

k = −F (Xk)

Hence, since all Newton iterates are well-defined, then Gk = Sk. Moreover, Xk+1 =
Xk + Sk = Xk + Gk, and so

Xk+1 = Xk +
1
p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
.

5

Consequently

AXk+1 = AXk + 1
p

[
AX

(1−p)/2
k AX

(1−p)/2
k − AXk

]
= XkA + 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k A − XkA

]
=

[
Xk + 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]]
A

= Xk+1A.

For the second part, since Sk = Gk then showing that XkSk = SkXk is equivalent to
showing that XkGk = GkXk. Indeed,

XkGk = Xk

[
1
p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]]
= 1

p

[
XkX

(1−p)/2
k AX

(1−p)/2
k − X2

k

]
= 1

p

[
X

(1−p)/2
k XkAX

(1−p)/2
k − X2

k

]
= 1

p

[
X

(1−p)/2
k AXkX

(1−p)/2
k − X2

k

]
= 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k Xk − X2

k

]
= 1

p

[
X

(1−p)/2
k AX

(1−p)/2
k − Xk

]
Xk

= GkXk

To establish the third part is enough to commute in a suitable way Xk and Sk in the
Newton iteration. �

Another specialized version (let us call it {Vk}), that we would like to present, is based
on a recent Newton type scheme discussed by Iannazzo [7] for computing matrix square
roots. It is based on the fact that Hk commutes with Xk+1 in the three simplified Newton
schemes presented above. In that case Vk+1 = Vk + Hk, and

Hk =
1
p
(AV 1−p

k − Vk) =
1
p
(A − V p

k)V 1−p
k . (7)

Hence A − V p
k − pV p−1

k Hk = 0, and so

Hk+1 = 1
p [A − (Vk + Hk)p] V 1−p

k+1

=
1
p

⎡
⎣A −

p∑
q=0

(
p
q

)
V q

k Hp−q
k

⎤
⎦ V 1−p

k+1

=
1
p

⎡
⎣A − pV p−1

k Hk − V p
k −

p−2∑
q=0

(
p
q

)
V q

k Hp−q
k

⎤
⎦ V 1−p

k+1

=
1
p

⎡
⎣−Hp

k −
p−2∑
q=1

(
p
q

)
V q

k Hp−q
k

⎤
⎦ V 1−p

k+1 .

6

This identity gives some possible equivalent iterative formulas for the step matrix Hk. In
the next section we present an algorithm that is based on this formulas for the special
cases p = 3 and p = 5, and that will be later considered for building hybrid schemes.

Based on the previous results, it follows that the Newton iteration {Xk} and the four
simplified versions {Yk}, {Zk}, {Wk}, and {Vk} produce the same iterates provided the
initial guess X0 = Y0 = Z0 = W0 = V0 commutes with A and F ′(Xk) is nonsingular at
each k. We now discuss briefly the convergence of these sequences when the matrix A is
diagonalizable. Following the arguments in Smith [15] (see also Higham [4]), we can in
theory diagonalize the iterates, and uncouple the process into n scalar Newton iterations
for the pth root of the eigenvalues, λi, of A. According to the standard analysis for the
scalar Newton’s method, these scalar sequences converge to λ

1/p
i provided the eigenvalues

of the initial guess are close enough to the eigenvalues at the solution.
Concerning the stability issue, it is well-known that under standard assumptions, the

classical Newton’s method is a stable algorithm for finding roots of nonlinear maps. Since
the Schur factorization of a given matrix is also a stable process, then Algorithm 3 for
computing the p-th root of a matrix is stable. On the other hand, as discussed by Smith
[15], the simplified versions that generate the sequences {Yk} and {Wk} are unstable. The
version that generates {Zk} belongs to the same family and, as we will see in practice, it
is also unstable although in general it reduces the loss of numerical commutativity, and as
a consequence it has a better behavior than the other two simplified versions. The algo-
rithms that generate the sequence {Zk} in (5) can be written in a compact form as follows:

Algorithm 4 For p odd
Given Z0 = I, T0 = A
For k=0,1,2...

Zk+1 = 1
p [Tk + (p − 1)Zk]

Uk+1 = Z−1
k+1Zk

Tk+1 = U
(p−1)/2
k+1 Tk U

(p−1)/2
k+1

End

Algorithm 5 For p even
Given Z0 = I, T0 = A
For k=0,1,2...

Zk+1 = 1
p [Tk + (p − 1)I] Zk

Uk+1 = Z−1
k+1Zk

Tk+1 = U
p/2
k+1 Tk U

p/2
k+1

End

4 Special cases: p = 3 and p = 5

We have special interest in computing the cubic root of a given matrix (p = 3). This
problems has been recently associated with the calculation of fractional derivatives that
appear in high energy physics [10, 11]. In that case, the three simplified versions {Yk},
{Zk}, {Wk} can be written as

Yk+1 = 1
3

[
Y −2

k A + 2Yk

]
Zk+1 = 1

3

[
Z−1

k AZ−1
k + 2Zk

]
Wk+1 = 1

3

[
AW−2

k + 2Wk

]

7

For the sequence {Vk}, when p = 3, we present the following expression to compute
Hk+1 obtained from (7).

Hk+1 = 1
3(−H3

k − 3VkH
2
k)V −2

k+1

= 1
3(−3Vk − Hk)H2

kV −2
k+1

= 1
3(−3Vk+1 + 2Hk)H2

kV −2
k+1

= 1
3HkV

−1
k+1Hk(2V −1

k+1Hk − 3I)

This identity gives some possible equivalent iterative formulas for the step matrix Hk. The
following algorithm is based on one of those formulas, and will be further analyzed.

Algorithm 6 Given V0 such that AV0 = V0A

Set H0 = 1
3(V −1

0 AV −1
0 − V0)

For k=0,1,2...

Vk+1 = Vk + Hk

Tk+1 = V −1
k+1Hk

Hk+1 = 1
3HkTk+1(2Tk+1 − 3I)

End

We now investigate the stability of the sequence {Vk} generated by Algorithm 6. To
be precise, emulating the arguments used in [7, pp. 277-278], we will analyze the effect
of small perturbations at a given iteration over the forthcoming iterations. Let ∆Vk and
∆Hk be the numerical perturbations introduced at the kth iteration of Algorithm 6, and
let

V̂k = Vk + ∆Vk,

Ĥk = Hk + ∆Hk.

Hence,
∆Vk+1 = ∆Vk + ∆Hk,

and assuming exact arithmetic for ∆Hk+1,

∆Hk+1 = Ĥk+1−Hk+1 =
1
3
ĤkV̂

−1
k+1Ĥk(2V̂ −1

k+1Ĥk−3I)− 1
3
HkV

−1
k+1Hk(2V −1

k+1Hk−3I). (8)

It is well-known that for any nonsingular matrix B and any matrix C,

(B + C)−1 ≈ B−1 − B−1CB−1 (9)

up to second order terms. Therefore, using (9) and (8), and recalling that

V̂ −1
k+1 = (Vk+1 + ∆Vk+1)−1,

8

we obtain

∆Hk+1 ≈ 1
3
Ĥk(V −1

k+1 − V −1
k+1∆Vk+1V

−1
k+1)Ĥk(2(V −1

k+1 − V −1
k+1∆Vk+1V

−1
k+1)Ĥk − 3I)

− 1
3
HkV

−1
k+1Hk(2V −1

k+1Hk − 3I).

Using now that Ĥqzk = Hk + ∆Hk it follows, after some algebraic manipulations and
several suitable cancellations, that

∆Hk+1 ≈ 2
3
(−HkV

−1
k+1∆Vk+1V

−1
k+1HkV

−1
k+1Hk + ∆HkV

−1
k+1HkV

−1
k+1Hk

+ HkV
−1
k+1∆HkV

−1
k+1Hk − HkV

−1
k+1HkV

−1
k+1∆Vk+1V

−1
k+1Hk + HkV

−1
k+1HkV

−1
k+1∆Hk)

+ HkV
−1
k+1∆Vk+1V

−1
k+1Hk − ∆HkV

−1
k+1Hk − HkV

−1
k+1∆Hk.

Now, recalling that ∆Vk+1 = ∆Vk + ∆Hk and denoting αk = ‖V −1
k+1Hk‖ = ‖Tk+1‖ we

obtain
‖∆Hk+1‖ ≈≤ (

4
3
α3

k + α2
k)‖∆Vk‖ + (

4
3
α3

k + 3α2
k + 2αk)‖∆Hk‖. (10)

Moreover, using (7) we have that

αk = ‖Tk+1‖ = ‖1
3
(AV −2

k − Vk)V −1
k+1‖ = ‖1

3
(AV −3

k − I)VkV
−1
k+1‖,

and so,

αk ≤ 1
3
‖AV −3

k − I‖ ‖Vk‖ ‖Vk+1‖−1.

Consequently, for k large enough, if Vk is close to the cubic root of A, then ‖Vk+1‖ ≈ ‖Vk‖
and ‖AV −3

k − I‖ ≈ 0. Therefore, 0 < αk 	 1. Hence, using (10), for k large enough
‖∆Hk+1‖ 	 ‖∆Hk‖ and ‖∆Vk+1‖ ≈ ‖∆Vk‖, i.e., the error at iteration k does not amplify.

In Figure 2 we can see the behavior of the four simplified versions of Newton’s method
for finding the cubic root of the 5 × 5 Hilbert matrix. As expected, the versions that
produce the sequences {Zk}, {Wk} and {Yk} are unstable, whereas the one that produces
the sequence {Vk} is not. However, the sequence {Vk} shows stagnation way below the
required accuracy. Moreover, it is worth noticing that the sequence {Zk} achieves a better
approximation before blowing up. This behavior has been observed in several experiments
for different test matrices with different dimensions. This is precisely the characteristic
that motivates us to introduce, in the next section, hybrid techniques that combine the
sequences {Zk} and {Vk} with Algorithm 3 and a suitable alternating projection scheme.

Repeating the same arguments for p = 5, it follows from (7) that

Hk+1 =
1
5
HkV

−1
k+1Hk(4V −3

k+1H
3
k − 15V −2

k+1H
2
k + 20V −1

k+1Hk − 10I),

and the following algorithm is obtained

9

0 20 40 60 80 100
10

0

10
10

10
20

Iterations

||
F

(Y
k
)|

| F

Y
k

0 20 40 60 80 100
10

0

10
10

10
20

Iterations

||
F

(W
k
)|

| F

W
k

0 20 40 60 80 100
10

−10

10
0

10
10

10
20

Iterations

||
F

(Z
k
)|

| F

Z
k

0 20 40 60 80 100
10

0

10
10

10
20

Iterations

||
F

(V
k
)|

| F

V
k

Figure 2: Behavior of simplified versions of Newton’s method for finding the cubic root of
the 5 × 5 Hilbert matrix.

Algorithm 7 Given V0 such that AV0 = V0A

Set H0 = 1
5(V −2

0 AV −2
0 − V0)

For k=0,1,2...

Vk+1 = Vk + Hk

Tk+1 = V −1
k+1Hk

Hk+1 = 1
5HkTk+1(4T 3

k+1 − 15T 2
k+1 + 20Tk+1 − 10I)

End

A family of algorithms based on (7) can be obtained for any positive integer p. In
practice we have observed that for different values of p the algorithms that generate the
sequence Vk are stable, as established above for p = 3.

10

5 Hybrid versions

We can combine the algorithm that generates the sequence {Zk} with Algorithm 3 as
follows. Generate the sequence {Zk}, monitoring the size of the residual, and change to
Algorithm 3 at the first iteration k̄ for which

‖F (Zk̄+1)‖F ≥ δ ∗ ‖F (Zk̄)‖F ,

for 1 < δ 	 2, using X0 = Zk̄ as its initial guess. i. e., when the residual associated with
the sequence {Zk} shows the unstable behavior. This hybrid scheme makes sense, since the
sequence {Zk} tends to achieve good accuracy before showing an unstable behavior, and
so, the number of Newton - Kronecker steps required should be very small. Consequently,
the expensive final steps would be performed very few times.

A similar hybrid scheme can be defined combining the sequence {Vk} with Algorithm
3. In this case, the decision to start the Newton - Kronecker iterations is based on the
stagnation of the sequence {Vk}, described in the previous section. Therefore, we proceed
as follows. Generate the sequence {Vk}, monitoring the size of the residual, until

‖Vk̄+1 − Vk̄‖F ≤ 1.D − 15,

and continue with Algorithm 3 otherwise, using X0 = Vk̄ as its initial guess.
Another possible hybrid schemes can be constructed based on the lack of commuta-

tivity when using the simplified versions. This fact motivates us to propose the following
combinations. Generate the sequence {Zk} (or {Vk}), monitoring ρk = ‖AZk −ZkA‖F (or
ρk = ‖AVk−VkA‖F). If ρk ≥ 1.D−8 then project the iterate Zk (or Vk) onto the subspace
of matrices X that satisfy AX −XA = 0, and continue with the sequence {Zk} (or {Vk})
from the projected matrix. There is a straightforward implementation of this projection
process in MATLAB using the SVD factorization of Zk (or Vk) that, unfortunately, is very
expensive as we will see in our numerical experiments. Nevertheless, if a suitable and less
expensive projection is available, then this combination of ideas is a promising one.

In this work, we are using the following Matlab code to perform a projection onto the
subspace of matrices that commute with A:

function [P]=projSCA(A,B,I,n)
C=kron(I,A)-kron(A’,I);
b=reshape(B,n*n,1);
invC=pinv(C*C’);
pb=b-C’*invC*C*b;
P=reshape(pb,n,n);

6 Numerical Experiments

In the implementation of our hybrid schemes we proceed as follows:

• We stop all considered algorithms when the Frobenius norm of the residual is less
than 0.5D − 12.

11

• We consider that an algorithm fails when the number of iterations exceeds 100.

• The initial guess for all algorithms is the matrix A.

• We fix the parameter δ = 1.2

All experiments were run on a Pentium IV, 3.4GHz, using Matlab 7. We report the
number of required iterations (Iter), the CPU time in seconds (CPU), and the norm of
the residual (‖F (Xk)‖F) when the process is stopped. We use the symbol (**) to report
a failure.

We compare the following list of hybrid Newton algorithms with the Kronecker - New-
ton method (KN), based on algorithm (3), and the simplified versions that generate the
sequences Zk (NZ) and Vk (NV):

• Zk + Kronecker - Newton (KN)

• Vk + Kronecker - Newton (KN)

• Zk + Projections (P) (at most 3)

• Vk + Projections (P) (at most 3)

• Zk + one Projection (P) + Kronecker - Newton (KN).

We test the algorithms with the following matrices from the Matlab gallery:

• hilb: Hilbert matrix.

• kahan: an upper trapezoidal matrix. We set θ = 2.3.

• fiedler: Symmetric. We set c = 1
n(1, 2, · · · , n)t.

• lehmer: Symmetric and positive definite.

• parter: It possesses complex eigenvalues. We use X0 = A + (1.D − 16) ∗ i.

• pei: Symmetric. We set α = −3 such that the matrix is indefinite.

In our first experiment, we show the performance of the different algorithms for finding
the cubic root of the 5 × 5 Hilbert matrix. The results are in Table 1 and we can see in
this table that the pure sequences NZ and NV do not converge, and for this reason we do
not report those options in the forthcoming tables.

In Figure 3 we compare the residual norms of pure sequences with the residual norms
of hybrid versions. We can observe that the norm of the residual, for the sequence Zk,
was approximately 10−5 before changing to KN, while the norm of the residual, for the
sequence Vk, was approximately 102 before changing to KN. This significant difference
explains why Zk + KN requires fewer iterations than Vk + KN.

12

Scheme Iter CPU ‖F (Xk)‖F

Zk + KN 46(40+6) 0.046875 1.7609e-016
Vk + KN 52(31+21) 0.03125 2.7195e-016
Zk + P 46(2) 0.03125 2.1302e-013
Vk + P 55(2) 0.03125 2.1394e-013

Zk + P + KN 46(40+1+6) 0.0412 1.7609e-016
KN 45 0.0625 3.8858e-016
NZ ** ** **
NV ** ** **

Table 1: Performance of Hybrid versions of Newton’s method, simplified versions of New-
ton’s method and Newton’s method for finding the cubic root of the 5× 5 Hilbert matrix.

0 50 100 150
10

−20

10
0

10
20

10
40

Iter

||F
(X

k)||

Z
k

Z
k
+KN

0 50 100 150
10

−20

10
−10

10
0

10
10

10
20

Iter

||F
(X

k)||

V
k

V
k
+KN

0 50 100 150
10

−20

10
0

10
20

10
40

Iter

||F
(X

k)||

Z
k

Z
k
+P

0 50 100 150
10

−20

10
−10

10
0

10
10

10
20

Iter

||F
(X

k)||

V
k

V
k
+P

Figure 3: Behavior of simplified and hybrid versions of Newton’s method for finding the
cubic root of the 5 × 5 Hilbert matrix.

13

Scheme Iter CPU ‖F (Xk)‖F

Zk + KN 30(28+2) 0.11938 6.2156e-016
Vk + KN 29(27+2) 0.09375 8.5677e-016
Zk + P 30(3) 12.5625 2.6393e-015
Vk + P 29(1) 4.2344 2.5872e-015

Zk + P + KN 30(28+1+2) 4.3125 6.2156e-016
KN 27 0.67188 7.3154e-016

Table 2: Performance of Hybrid versions of Newton’s method finding the cubic root of the
25 × 25 Kahan matrix.

In Table 2 we show the performance of the different algorithms for finding the cubic
root of the 25 × 25 Kahan matrix and we observe that when n increases the projection
onto the subspace of matrices that commute with A takes a significant amount of CPU
time. For that reason we do not report those options in the forthcoming tables.

Zk + KN Vk + KN KN
iter 13(13+0) 13(13+0) 13

n = 10 CPU 0.03125 0.03125 0.036875
‖F (Xk)‖F 5.6203e-013 1.05e-013 8.758e-013

iter 21(19+2) 21(19+2) 19
n = 50 CPU 0.48438 0.48438 4.3125

‖F (Xk)‖F 6.637e-015 6.4122e-015 6.4e-015
iter 22(20+2) 23(21+2) 21

n = 90 CPU 7.1406 7.1719 76.7344
‖F (Xk)‖F 1.5339e-014 1.4756e-014 1.4855e-014

Table 3: Performance of Hybrid versions of Newton’s method for finding the cubic root of
the fiedler matrix for different values of n.

Zk + KN Vk + KN KN
iter 15(13+2) 14(12+2) 12

n = 50 CPU 1.9219 1.9219 10.7188
‖F (Xk)‖F 1.6735e-014 1.7466e-014 1.5328e-014

iter 16(14+2) 15(13+2) 13
n = 150 CPU 48.1875 48.2813 312.7188

‖F (Xk)‖F 8.3214e-014 9.5548e-014 1.3116e-013

Table 4: Performance of Hybrid versions of Newton’s method for finding the cubic root of
the pei matrix for different values of n.

From Table 3 to Table 5 we observe once again that for all values of n, small or large,
the hybrid versions required less CPU time than the Kronecker-Newton method. It is also
clear that the advantage of using the hybrid versions increases when n increases.

14

Zk + KN Vk + KN KN
iter 22(20+2) 21(19+2) 19

n = 60 CPU 1.0313 1.037 9.25
‖F (Xk)‖F 9.6909e-015 9.9393e-015 1.0116e-014

iter 22(20+2) 22(20+2) 20
n = 80 CPU 3.6094 3.5938 35.1094

‖F (Xk)‖F 1.5194e-014 1.5074e-014 1.5336e-014
iter 23(21+2) 23(21+2) 21

n = 100 CPU 11.3906 11.3906 118.625
‖F (Xk)‖F 2.1076e-014 2.0934e-014 2.1402e-014

iter 23(21+2) 24(22+2) 21
n = 120 CPU 26.5781 26.625 277.2656

‖F (Xk)‖F 2.76e-014 2.7636e-014 2.7719e-014

Table 5: Performance of Hybrid versions of Newton’s method for finding the cubic root of
the lehmer matrix for different values of n.

Zk + KN Vk + KN KN
iter 12(7+5) 12(11+1) 11

n = 10 CPU 0.03125 0.03125 0.046875
‖F (Xk)‖F 1.4954e-015 1.9252e-015 1.6216e-015

iter 13(5+8) 13(12+1) 12
n = 20 CPU 0.29688 0.0625 0.32813

‖F (Xk)‖F 4.3693e-015 5.0361e-015 5.1429e-015
iter 20(5+15) 21(19+2) 19

n = 50 CPU 13.7969 2.0156 17.3438
‖F (Xk)‖F 9.6557e-015 9.9789e-015 9.5033e-015

Table 6: Performance of Hybrid versions of Newton’s method for finding the cubic root of
the parter matrix for different values of n.

In Table 6 we observe that the hybrid version Zk + KN required more KN iterations
than the version Vk + KN. This behavior could be explained as follows. The criterion used
in the hybrid version Zk+ KN, for changing to KN, does not guarantee that ‖F (Zk+1)‖
has reached the smallest possible value, whereas in the hybrid version Vk + KN we can
guarantee that ‖F (Vk+1)‖ can not decrease any more.

In Tables 7, 8 and 9 we show the performance of the different hybrid versions of New-
ton’s method for finding the fifth root of several matrices. As in the previous experiments,
the required CPU time for the KN option is very high and we do not report it anymore.
We can observe that the hybrid version Zk + KN does not require KN iterations, while
Vk + KN in all cases requires KN iterations. This happens because the sequence Vk is
stabilized when the residual still has a large norm value.

15

Scheme Iter CPU ‖F (Xk)‖F

Zk + KN 15(15+0) 0 1.7299e-013
Vk + KN 23(17+6) 0.015625 8.5898e-014

Table 7: Performance of Hybrid versions of Newton’s method for finding the fifth (p = 5)
root of the 5 × 5 Kahan matrix.

Scheme Iter CPU ‖F (Xk)‖F

Zk + KN 25(25+0) 0.0133 1.1974e-015
Vk + KN 54(26+28) 0.95313 2.2748e-013

Table 8: Performance of Hybrid versions of Newton’s method for finding the fifth root of
the 5 × 5 lehmer matrix.

Zk + KN Vk + KN
iter 12(12+0) 20(13+7)

n = 10 CPU 0.001 0.0625
‖F (Xk)‖F 1.9817e-014 2.7559e-013

iter 14(14+0) 15(15+14)
n = 15 CPU 0.015625 0.21875

‖F (Xk)‖F 2.2914e-014 3.4695e-013

Table 9: Performance of Hybrid versions of Newton’s method for finding the fifth root of
the pei matrix for different values of n.

7 Conclusions

We present several specialized (or simplified) versions of Newton’s Method for computing
the p-th root of a given matrix A. We also discuss an efficient implementation, called
the Newton-Kronecker scheme, for solving the Sylvester equation that appears at every
Newton’s iteration using the Kronecker product.

All the specialized versions are based on the commutativity of the iterates with the
matrix A. Among the new specialized versions, we pay special attention to the one that
produces the sequence Zk. The Zk scheme is not stable, but it tends to achieve a much
better approximation of the p-th root of A than the previously-known simplified schemes
(denoted as Yk and Wk), before the unstable behavior is observed. The unstable behavior
appears when the commutativity between A and Zk is lost.

Another specialized version that we present is the one denoted as Vk. We establish
that the Vk scheme is stable for p = 3, and we have observed in practice that the stability
property also holds for all values of p > 3. Unfortunately, the Vk scheme tends to stagnate
before reaching an accurate approximation of the p-th root of A. This phenomenon is also
due to the lack of commutativity between A and the iterates Vk.

16

We also present some hybrid schemes that try to avoid the lack of commutativity
combining the simplified methods with the Newton-Kronecker scheme. Although more
experiments are needed to assess the effectiveness of these hybrid schemes, the initial
results on several matrices are encouraging.

Current work includes the search of a smoother and automatic way of combining the Zk

scheme with the Newton-Kronecker method. In this work we change from the Zk scheme
to the Newton-Kronecker method using a parameter δ, chosen ad-hoc. Future work should
also include the study of an inexpensive way of projecting onto the set of matrices that
commute with a given one. As observed in our experiments, an inexpensive projection of
that kind could lead to very powerful hybrid schemes for the calculation of the p-th root
of a given matrix.

References

[1] D. A. Bini, N. J. Higham and B. Meini [2005], Algorithms for the matrix p-th root,
Numerical Algorithms 39, pp. 349–378.

[2] A. Bjorck and S. Hammarling [1983], A Schur methods for the square root of a
matrix, Linear Algebra and its Applications 52/53, pp. 127–140.

[3] S. H. Cheng, N. J. Higham, C. S. Kenney and A. J. Laub [2001], Approximating
the logarithm of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl. 2, pp.
1112–1125.

[4] N. J. Higham [1986], Newton’s methods for the matrix square root, Mathematics
of Computation 46, pp. 537–549.

[5] N. J. Higham [1997], Stable iterations for the matrix square root, Numer. Algo-
rithms 15, pp. 227–242.

[6] R. A. Horn and C. R. Johnson (1991), Topics in Matrix Analysis, Cambridge
University Press.

[7] B. Iannazzo [2003], A note on computing the matrix square root, Calcolo 40, pp.
273–283.

[8] C. S. Kenney and A. J. Laub [1989], Padé error estimates for the logarithm of a
matrix, nternat. J. Control 50, pp. 707–730.

[9] B. Meini [2004], The matrix square root from a new functional perspective: theoret-
ical results and computational issues, SIAM J. Matrix Anal. Appl. 26, pp. 362–376.

[10] M. S. Plyushchay and M. Rausch de Traubenberg [2000], Cubic root of Klein-
Gordon equation, Phys. Lett. B 477, pp. 276–284.

[11] A. Raspini [2000], Dirac equation with fractional derivatives of order 2/3, FIZIKA
B (Zagreb) 9, pp. 49–54.

17

[12] L. S. Shieh, Y. T. Tsay and C. T. Wang [1984], Matrix sector functions and their
application to system theory, IEEE Proc. 131, pp. 171–181.

[13] L. S. Shieh, S. R. Lian and B. C. Mcinnis [1987], Fast and stable algorithms for
computing the principal square root of a complex matrix, IEEE Transactions on
Automatic Control AC-32, pp. 820–822.

[14] L. S. Shieh, Y. T. Tsay and R. E. Yates [1985], Computation of the principal nth
roots of complex matrices, IEEE Transactions on Automatic Control AC-30, pp.
606–608.

[15] M. I. Smith [2003], A Schur algorithm for computing matrix pth roots, SIAM J.
Matrix Anal. Appl. 24, pp. 971–989.

[16] J. S. H. Tsai, L. S. Shieh, and R. E. Yates [1988], Fast and stable algorithms
for computing the principal nth root of a Complex matrix and the matrix sector
function, Comput. Math. Applic. 15, pp. 903–913.

[17] Y. T. Tsay, L. S. Shieh, and J. S. H. Tsai [1986], A fast method for computing the
principal nth roots of complex matrices, Linear Alg. Appl. 76, pp. 205–221.

18

