
Universidad Central de Venezuela
Facultad de Ciencias

Escuela de Computación

Lecturas en Ciencias de la Computación
ISSN 1316-6239

A derivative-free nonmonotone line search technique for
unconstrained optimization

M.A. Diniz-Ehrhardt, J.M. Martínez y Marcos Raydan

RT-2006-10

Centro de Cálculo Científico y Técnológico

CCCT

Caracas, Octubre 2006

A derivative–free nonmonotone line search technique for unconstrained

optimization

M. A. Diniz-Ehrhardt ∗ J. M. Mart́ınez † M. Raydan ‡

October 30, 2006

Dedicated with friendship to Claude Brezinski at the occasion of his retirement

Abstract

A tolerant derivative–free nonmonotone line search technique is proposed and analyzed. Several con-
secutive increases in the objective function and also non descent directions are allowed for unconstrained
minimization. To exemplify the power of this new line search we describe a direct search algorithm in which
the directions are chosen randomly. The convergence properties of this random method rely exclusively
on the line search technique. We present numerical experiments, to illustrate the advantages of using a
derivative-free nonmonotone globalization strategy, with approximated-gradient type methods and also with
the inverse SR1 update that could produce non descent directions. In all cases we use a local variation finite
differences approximation to the gradient.

Keywords: unconstrained minimization, derivative-free methods, nonmonotone line-search schemes, SR1
updates.

1 Introduction

We propose and analyze a new tolerant and nonmonotone derivative–free line search globalization strategy for
the unconstrained minimization problem

Minimize f(x) subject to x ∈ IRn, (1)

where f : IRn → IR has continuous partial derivatives which are not available.
The optimization problem (1) appears in industrial applications because, quite frequently, the objective

function is evaluated through a computer simulation process, and therefore derivatives cannot be evaluated.
For example, shape optimization in fluid-dynamics problems has received remarkable attention in recent years
(e.g., [2, 18, 22] and references therein). Due to the availability of very efficient commercial and public-domain
Computational Fluid Dynamics (CFD) solvers, shape optimization strategies that treat the solver as a black box
offer a strong potential. For this type of methods, the CFD solver simply participates during the evaluation
of the objective function. In a typical fluid dynamics problem, the values of the pressure drop, the outlet
velocity, etc., depend on the fluid properties, the boundary conditions and the boundary shape. In a shape
optimization problem, the fluid properties and the boundary conditions are already set, thus, the objective
function, represented by a predetermined combination of the above-mentioned fluid-dynamics parameters,

∗Department of Applied Mathematics IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970 Campinas SP,
Brazil. This author was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grant 90-3724-6), and CNPq. E-mail:
cheti@ime.unicamp.br

†Department of Applied Mathematics IMECC-UNICAMP, University of Campinas, CP 6065, 13081-970 Campinas SP, Brazil.
This author was supported by PRONEX-Optimization 76.79.1008-00, FAPESP (Grant 90-3724-6), CNPq and FAEP-UNICAMP.
E-mail: martinez@ime.unicamp.br

‡Departamento de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47002, Caracas 1041-A, Venezuela.
Sponsored by the Center of Scientific Computing at UCV. E-mail: mraydan@kuaimare.ciens.ucv.ve

1

depends on the boundary shape only. Geometry is the input to the black box (CFD solver), the value of the
objective function is the output, and derivative information is very hard (or even impossible) to obtain from
this computational simulation.

The globalization strategy that we present combines and extends the Grippo, Lampariello, and Lucidi
(GLL) [17], the Lucidi and Sciandrone (LSc) [21], and the Li and Fukushima (LF) [20] line search techniques.
It also extends similar nonmonotone line search schemes recently proposed [19], for solving large-scale nonlinear
systems of equations. The GLL strategy accepts significant consecutive increases in the objective function
(nonmonotone behavior), but requires exact gradient information and descent directions to guarantee global
convergence. On the other hand, the LF scheme tolerates non descent directions but little or insufficient
nonmonotone behavior. Finally, the LSc line search is a monotonic strategy that accepts several directions
to be explored simultaneously. For some well-known and also some new numerical methods for unconstrained
minimization, the three aspects (non descent directions, nonmonotone behavior, and several directions explored
simultaneously) could be of great help and important for good numerical performance. Our new line search
scheme, that will be described in Section 2, has these three features.

To illustrate the power of this new line search we describe, in Section 3, a direct search algorithm in which
the directions are chosen randomly. The convergence properties of this random method rely exclusively on
the line search technique. Some small size numerical experiments are also presented for this case. We present
numerical experiments with approximated-gradient type methods (Section 4), and also with the inverse SR1
update [13, 16] (Section 5) that could produce non descent directions. In both cases we report numerical results
using a local variation finite differences approximation to the gradient, as discussed and used in [14]. In Section
6 we discuss the observed results, in particular the advantages of using a tolerant derivative-free nonmonotone
globalization strategy.
Notation

Throughout the paper ‖ · ‖ will be the Euclidian norm although in some cases it can be replaced by an
arbitrary norm.

2 Model line-search algorithm and convergence

We denote g(x) = ∇f(x) for all x ∈ IRn. Let τmin, τmax be such that 0 < τmin < τmax < 1. Let M be a positive
integer. Assume that {ηk} is a sequence such that

ηk > 0, for all k = 0, 1, 2, . . . ,
∞∑

k=0

ηk = η <∞

and that {βk} is a bounded sequence such that βk > 0 for all k ∈ IN with the property that, for all infinite
subset of indices K ⊂ IN ,

lim
k∈K

βk = 0⇒ lim
k∈K

g(xk) = 0. (2)

(Observe that the choice βk ≡ 1 is admissible.) Assume that x0 ∈ IRn is a given initial point. If xk ∈ IRn is
the k−th iterate computed by the algorithm, the steps for computing xk+1 are given below.

Algorithm 1. (Model algorithm)

Step 1. Compute the directions
Compute Dk a finite set of IRn. (The cardinality of Dk does not need to be constant.)
Define

f̄k = max{f(xk), . . . , f(xmax{k−M+1,0}}.
Step 2. Backtracking
Step 2.1. For all d ∈ Dk set α(d)← 1.
Step 2.2. Find (if possible) d ∈ Dk such that the inequality

f(xk + α(d)d) ≤ f̄k + ηk − α(d)2βk (3)

2

holds. If some d satisfying (3) is found, set αk = α(d), choose xk+1 such that

f(xk+1) ≤ f(xk + αkd), (4)

and finish the iteration.
If (3) fails for all d ∈ Dk, compute, for all d ∈ Dk, αnew(d) ∈ [τminα(d), τmaxα(d)], set α(d)← αnew(d) and

repeat Step 2.2.

The fact that an iteration of the algorithm is well defined is trivial in this case, because ηk > 0 guarantees
that (3) holds if α(d) is sufficiently small. Observe that the choice xk+1 = xk + αkd is admissible in (4). We
allow the algorithm to make a different choice of xk+1 in order to try extrapolation steps.

For proving convergence of the algorithm, we need some definitions to cope with the nonmonotonicity of
f(xk). A similar construction has been proposed in [5] for proving convergence of the inexact SPG method.

Define, for all ` = 1, 2, 3, . . ., V` = max{f(x(`−1)M+1), . . . , f(x`M)} and ν(`) ∈ {(`− 1)M + 1, . . . , `M} such
that f(xν(`)) = V`.

Clearly,
f(x`M+1) ≤ max{f(x(`−1)M+1), . . . , f(x`M)}+ η`M − α2

`Mβ`M

= V` + η`M − α2
`Mβ`M ≤ V` + η`M ,

f(x`M+2) ≤ max{V`, f(x`M+1)}+ η`M+1 − α2
`M+1β`M+1

≤ V` + η`M + η`M+1 − α2
`M+1β`M+1 ≤ V` + η`M + η`M+1.

So, by an inductive argument, f(x`M+j) ≤ V` + η`M + . . .+ η`M+j−1−α2
`M+j−1β`M+j−1 for all j = 1, 2, . . . ,M .

But ν(` + 1) ∈ {`M + 1, . . . , `M + M}, therefore,

V`+1 = f(xν(`+1)) ≤ V` + (η`M + . . . + η`M+M−1)− α2
ν(`+1)−1βν(`+1)−1.

So, for all ` = 1, 2, . . . we have that

f(xν(`+1)) ≤ f(xν(`)) + (η`M + . . . + η`M+M−1)− α2
ν(`+1)−1βν(`+1)−1. (5)

Using this inequality, we can prove the following proposition:
Proposition 1. Assume that {f(xk)}k∈IN is bounded below. Then

lim
`→∞

α2
ν(`)−1βν(`)−1 = 0.

Proof. It follows from (5) using the summability of ηk and the fact that f is bounded below. 2

From now on we define:
K = {ν(1)− 1, ν(2)− 1, ν(3)− 1, . . .}. (6)

Theorem 1. Assume that {xk}k∈IN is generated by Algorithm 1 and {f(xk)}k∈IN is bounded below. Assume,
moreover, that dk ∈ Dk for all k ∈ IN and (x∗, d) is a limit point of the subsequence {(xk, dk)}k∈K . Then

〈g(x∗), d〉 ≥ 0. (7)

Proof. Let K1 be an infinite subset of K such that limk∈K1 xk = x∗ and limk∈K1 dk = d.
By Proposition 1, we have that

lim
k∈K1

α2
kβk = 0.

If some subsequence of {βk} converges to zero, then g(x∗) = 0 and we are done. Otherwise, we have that
limk∈K1 αk = 0. Let us analyze this situation. Therefore, for k ∈ K1 large enough, we have that αk < 1.

3

Without loss of generality let us assume that αk < 1 for all k ∈ K1. By the initial choice of α(d) and (3) we
have that for all k ∈ K1 and for all d ∈ Dk, there exists α′k(d) such that

lim
k∈K1

α′k(d) = 0 (8)

and
f(xk + α′k(d)d) > f̄k + ηk − (α′k(d))2βk. (9)

In particular, (9) holds for d = dk. Let us write, for simplicity α′k = α′k(dk). Therefore, since f̄k ≥ f(xk),

f(xk + α′kdk)− f(xk)
α′k

≥ −α′kβk

for all k ∈ K1. By the Mean Value Theorem, for all k ∈ K1 there exists ξk ∈ [0, 1] such that

〈g(xk + ξkα
′
kdk), dk〉 ≥ −α′kβk.

Therefore, for all k ∈ K1,

〈g(xk + ξkα
′
kdk)− g(xk), dk〉+ 〈g(xk), dk〉 ≥ −α′kβk.

So, for all k ∈ K1,
〈g(xk), dk〉 ≥ −α′kβk − ‖g(xk + ξkα

′
kdk)− g(xk)‖‖dk‖.

Define β′k = α′kβk + ‖g(xk + ξkα
′
kdk) − g(xk)‖‖dk‖ > 0. Since ‖dk‖ and βk are bounded and α′k → 0 we have

that
lim

k∈K1

β′k = 0 (10)

and
〈g(xk), dk〉 ≥ −β′k

By (10), taking limits in both sides of this inequality, we obtain the desired result. 2

Remark 1. Observe that the algorithm does not have a stopping criterion. The iterations continue even when
g(xk) = 0. However the proof is correct even when this occurs, since the sequence is always infinite.

Remark 2. The role of the parameter ηk is to guarantee that the iteration is well defined, even when dk is
not a descent direction.

Remark 3. The condition (2) is satisfied if βk = 1 for all k and, many times, this is the only reasonable choice.
In some situations, however, different alternatives are more reasonable. For example, if f(x) ≥ 0 for all x and
a solution with null (or almost null) objective function value can be expected (i.e. least-squares problems) it is
sensible to choose βk = min{c1, c2f(xk)} where c1, c2 > 0 are suitable scaling parameters.

Corollary 1. Assume that xk and Dk are as in Theorem 1, 0 < θ < 1, and 0 < ∆min < ∆max <∞. Suppose
that the level set {x ∈ IRn | f(x) ≤ f(x0) + η} is bounded and that K1 is an infinite subset of K such that for
all k ∈ K1 there exists dk ∈ Dk satisfying

‖dk‖ ∈ [∆min,∆max] and 〈dk, g(xk)〉 ≤ −θ‖g(xk)‖‖dk‖. (11)

Then, for all ε > 0, there exists k ∈ IN such that ‖g(xk)‖ ≤ ε.
Proof. Since, by the definition of the algorithm, f(xk) ≤ f(x0)+η for all k ∈ IN , the sequence {xk} is bounded.
Then, by (11), there exists an infinite subsequence K2 ⊂ K1 such that

lim
k∈K2

xk = x∗, lim
k∈K2

dk = d,

4

for some x∗ ∈ IRn and d 6= 0. By (11), 〈g(xk), dk〉 ≤ 0 for all k. Then, by Theorem 1, 〈g(x∗), d〉 = 0.
Therefore, limk∈K2〈dk, g(xk)〉 = 0.
Then, by (11), limk∈K2 ‖g(xk)‖‖dk‖ = 0. Since ‖dk‖ ≥ ∆min > 0 for all k, this implies that limk∈K2 ‖g(xk)‖ =

0. So, for k ∈ K2 large enough, ‖g(xk)‖ ≤ ε, as we wanted to prove. 2

Corollary 1 says that, under the assumption (11), stationary points up to any arbitrary precision can be
found by Algorithm 1. Now, strictly speaking, the fulfillment of the second part of (11) depends on knowing
g(xk), which is beyond our possibilities if we want to devise truly derivative-free methods. We may circumvent
this difficulty by means of the occasional choice of a random direction. Roughly speaking, the condition that
must be satisfied by a random direction dk is that the probability of (11) must be greater than a fixed probability
p > 0. This requirement is easy to satisfy due to the geometrical meaning of (11). With some abuse of lan-
guage, the convergence properties of this “occasionally random” version of Algorithm 1 are given in Theorem 2.

Theorem 2. Assume that {xk}k∈IN is generated by Algorithm 1 with the condition that, for all k ∈ IN , a
direction dk ∈ Dk is chosen randomly in such a way that:

1. d0, d1, d2, . . . are independent n-dimensional random variables;

2. There exist θ ∈ (0, 1), p ∈ (0, 1), 0 < ∆min < ∆max < ∞ such that, for all k ∈ IN , the probability of the
event defined by (11) is greater than p.

Assume that {x ∈ IRn | f(x) ≤ f(x0) + η} is bounded and ε > 0. Then, with probability 1, there exists k ∈ IN
such that ‖g(xk)‖ ≤ ε.
Proof. By the definition of Algorithm 2, for all ` ∈ IN the probability of the event defined by

〈g(x(`−1)M), d(`−1)M 〉 ≤ −θ‖g(x(`−1)M)‖‖d(`−1)M‖, . . . , 〈g(x`M−1), d`M−1〉 ≤ −θ‖g(x`M−1)‖‖d`M−1‖ (12)

and
∆min ≤ ‖d(`−1)M‖ ≤ ∆max, . . . ,∆min ≤ ‖d`M−1‖ ≤ ∆max (13)

is greater than pM > 0. Therefore, the probability of the existence of a sequence K1 ⊂ IN such that (12-13)
holds for all k ∈ K1 is equal to 1.

Now, in each set of indices of the form {(`−1)M, . . . , `M−1} necessarily one of them is of the form ν(`)−1.
Therefore, the probability of the existence of a subsequence K1 ⊂ K such that (11) holds for all k ∈ K1 is
equal to 1. Therefore, by Corollary 1, the probability of the existence of k such that ‖g(xk)‖ ≤ ε is equal to 1,
as we wanted to prove. 2

The choice (4) allows one to employ extrapolation steps. Roughly speaking, after finding an acceptable
point xk + αkdk one tries to find an even better point xk + cαkd for some c > 1. This may be quite useful far
from the solution. Assume that cmax > 1. A simple Extrapolation algorithm is given below. However, there is
a large field for extrapolation improvement using the theory of sequence transformations [6, 7].

Algorithm 2. (Extrapolation)

Step 1. Set c = 1.
Step 2. If 2c > cmax set xk+1 = xk + cαkd and finish the iteration.
Step 3. If f(xk + 2cαkd) > f(xk + cαkd), set xk+1 = xk + cαkd and finish the iteration.
Step 4. Set c← 2c and go to Step 2.

2.1 Discussion

One should be very cautious in the interpretation of Theorem 2. Algorithms based on random choices for min-
imization usually converge to global minimizers with probability 1. On the other hand, Theorem 2 guarantees

5

a weaker property. So, why should we use this random choice of directions in a practical algorithm instead of
any standard global optimization procedure based on random points?

Moreover, theorems that say that random algorithms converge to global minimizers with probability 1
usually give very little information about the practical behavior of the method. Isn’t this the case of our
Theorem 2? In other words, assume that we define an algorithm based on a reasonable (say, quasi-Newton)
choice of the directions with the contribution of occasional random directions, satisfying the assumptions of
Theorem 2: Should this be more efficient than merely using the “reasonable choices” with no random direction
at all?

There is still a third question: with the assumptions of Theorem 2, is it possible to prove convergence to
global minimizers?

The third question is merely theoretical and its answer is No. Let us give a one-variable counter-example.
Assume that f : IR→ IR is such that limx→−∞ f(x) =∞, f is strictly decreasing in (−∞, 1], strictly increasing
in [1, 3], strictly decreasing in [3, 5] and strictly increasing in [5,∞) with limx→∞ f(x) = ∞. Assume that
f(1) = 1, f(3) = 4, f(5) = 0. Therefore, 1 is a local minimizer and 5 is a global minimizer. Assume that
η = 1, f(x0) = 2, ∆max = 1. Assume that the level set defined by f(x) ≤ 3 has two connected components
[0.5, 1.5] and [4, 6]. Finally, assume that Dk = {dk} and that ‖dk‖ is always not greater than ∆max. Then, all
the iterates belong to [0.5, 1.5] and, therefore, the probability of convergence to the global minimizer is zero.

Let us go now to the first question. We wish to compare a naive implementation of Algorithm 1 (which
do not exhibits convergence to global minimizers) with a naive random-point algorithm which possess the
property of finding global minimizers with an arbitrary precision. Both algorithms needs decisions about the
distribution of the random variables that define the directions (in the case of Algorithm 1) and the random
points (in the case of the competitor). In the case of Algorithm 1, let us use Dk = {dk}, choosing dk with all
its random components uniformly distributed between −1 and 1. In the case of the “competitor” we need to
define the distribution of the search points xk. This is a hard decision, so, we are going to give this algorithm
an additional advantage: we will generate the random points uniformly in a box where the global minimizer is
known to be. Finally, in Algorithm 1 we will use ηk = 1.1−k, βk = 1 for all k, τmin = τmax = 0.5 and M = 1.

We wish to minimize f(x) =
∑n

i=1 x2
i /i. In Algorithm 1 the initial point x0 is chosen with all its components

randomly distributed in [−50, 50]. In the case of the Competitor, the random trial points are always chosen
uniformly in [−50, 50]n. The results for n = 10 were the following: after more than 2 million functional
evaluations and five minutes of execution time, the Competitor obtained a best function value of 48.38. The
simple implementation on Algorithm 1, on the other hand, obtained a functional value smaller than 10−6 in
921 iterations with 16012 functional evaluations and using less than 1 second.

The second question remains. Is there any practical advantage in adding, from time to time, random
directions to set Dk, if the other (one or more than one) directions in Dk are (say) approximate quasi-Newton
or gradient type directions? The answer to this question is in our numerical experiments.

3 A random search algorithm

To illustrate the flexibility of our model algorithm (Algorithm 1), and the potentiality of the theory developed in
Section 2, we present the following algorithm that uses randomly generated search directions at every iteration.

Assume that f , τmin, τmax, {ηk}, and x0 are as in Algorithm 1 and that cmax is as in Algorithm 2. Assume
that ∆min,∆max are such that 0 < ∆min < ∆max <∞.

Given xk ∈ IRn, the steps for computing xk+1 are the following:

Algorithm 3. (Random line-search algorithm)
Step 1. Compute a random direction

Compute a random direction d ∈ IRn such that ∆min ≤ ‖d‖ ≤ ∆max.
Define f̄k = max{f(xk), . . . , f(xmax{k−M+1,0}}.

Step 2. Trying unitary step
If

f(xk + d) ≤ f(xk) + ηk − βk, (14)

6

set αk = 1, dk = d and go to Step 5 (Extrapolation).
If

f(xk − d) ≤ f(xk) + ηk − βk, (15)

set αk = 1, dk = −d and go to Step 5 (Extrapolation).
Step 3. Quadratic interpolation

Compute α̃, the minimizer of the parabola that interpolates the points

(−1, f(xk − d)), (0, f(xk)), (1, f(xk + d)).

If α̃ exists and belongs to [τmin, τmax], set dk = d and go to Step 4 (Backtracking).
If α̃ exists and belongs to [−τmax,−τmin], set dk = −d, α̃ = −α̃ and go to Step 4 (Backtracking).
If f(xk + d) ≤ f(xk − d), set dk = d, α̃ = 1/2 and go to Step 4 (Backtracking).
If f(xk + d) > f(xk − d), set dk = −d, α̃ = 1/2 and go to Step 4 (Backtracking).

Step 4. Backtracking
Step 4.1. Set

α← α̃. (16)

Step 4.2. If
f(xk + αdk) ≤ f̄k + ηk − α2βk, (17)

set αk = α, xk+1 = xk + αkdk and finish the iteration.
If (17) does not hold, compute αnew ∈ [τminα, τmaxα] using safeguarded quadratic interpolation, set

α← αnew and repeat the test (17).

Step 5. Extrapolation
Use Algorithm 2 to obtain c ≥ 1 and set xk+1 = xk + cαkdk.

Clearly, this algorithm is a particular case of Algorithm 2, although the rigorous verification is rather
tedious.

In order to assess the performance of this algorithm, the twenty first problems from Moré, Garbow and
Hillstrom collection [23] were selected to constitute our test set. The tests were run in Fortran 77, double
precision. The initial approximation x0 was the default proposed in [23]. We also used τmin = 0.1, τmax =
0.9, cmax = 10,∆min = −2,∆max = 2 and M = 15.

The sequences in the line search, ηk and βk, are defined as:

ηk =
|f(x0)|

k1.1
and βk ≡ 1, k = 0, 1, . . .

The algorithm is interrupted if:
f(xk) ≤ 10−9, (18)

since all of these tests are least–squares problems. However, as the algorithm may find any critical point of
problem (1), we also adopted the stopping criterion

‖xk+1 − xk‖ ≤ tol. (19)

We say that the sequence {xk} does not converge if a maximum number of function evaluations in the main
algorithm (500000) or in the line search (1000) was exceeded, or a maximum number of iterations (5000) was
attained. The results are shown in Table 1, where problems are presented according to the order of [23]. We
used the following notation:

• n - denotes the number of variables;

7

• Conv=1 indicates that the stopping criterion (18) was satisfied at an approximation xk;

• Conv=2 means that the algorithm was interrupted because (19), with tol = 10−7, was occurred;

• Conv=3 indicates that the maximum number of function evaluations in the line search was exceeded;

• Conv=4 means that the maximum number of function evaluations in the main algorithm has been at-
tained;

• Conv=5 denotes that the maximum number of iterations was exceeded;

• NC means nonconvergence since a non numeric value (NaN) was attained;

• It and InterIt denotes, respectively, the number of iterations in the main algorithm and the number of
line search iterations;

• Searches represent the number of times that the line search procedure was necessary;

• f is the value of the function at the solution obtained by the algorithm;

• difx is equal to the value of ‖xk+1 − xk‖.

Prob n Conv It InterIt Searches Evalf f difx

1 2 2 430 377 98 1619 4.91D-05 8.96D-08
2 2 5 5000 5470 1528 22243 4.91D+01 7.83DE-05
3 2 2 23 12 1 78 1.352D-01 2.55D-08
4 2 2 341 0 0 342 10.00D+11 4.09D-08
5 2 2 849 2634 531 5122 2.55D-03 6.11D-08
6 2 2 3769 38 22 15026 1.24D+02 7.68D-10
7 3 NC 134 0 0 137 NaN NaN
8 3 2 1453 1627 544 5905 8.52D-03 4.03D-08
9 3 2 4 29 4 42 1.01D-06 4.97D-08
10 3 2 2 0 0 6 7.13D+08 4.26D-11
11 3 2 1010 2826 585 5832 6.67D+00 9.35D-08
12 3 2 682 98 43 1740 1.28D-04 2.47D-08
13 4 2 487 20 487 1174 3.52D-05 3.86D-08
14 4 5 5000 358 173 12636 1.78D+00 8.76D-02
15 4 2 22 126 19 193 2.92D-03 5.94D-08
16 4 5 5000 0 0 5001 6.35D+06 2.55D-06
17 4 3 356 620 216 1689 6.57D-02 6.67D-08
18 6 2 1556 1356 5516 10185 3.44D-02 9.51D-08
19 11 2 407 174 77 1386 7.65D+00 6.81D-09
20 6 2 1587 1234 517 5967 2.00D-02 1.36D-08

Table 1: Random search algorithm

We must recall that the directions generated by this algorithm are always chosen randomly. In spite of this,
comparing the results in Table 1 with the exact solutions exhibited in [23], we can see that two of the twenty
test problems were successfully solved (Problems 6 and 8) and for six of the problems (2, 9, 16, 18, 19 and 20)
the objective function value was close to the one reported in [23]. On the negative size, the number of function
evaluations is clearly large even for small dimensions. For medium size or large scale problems we will discuss
in the next sections additional options, that nevertheless, will take advantage of the theoretical and practical
features of random directions.

4 Discrete gradient type algorithms

In this section we present an algorithm that combines the idea of a random direction with a gradient type
direction, according to our discussion of subsection 2.1.

Assume that f , τmin, τmax, {ηk}, and x0 are as in Algorithm 1. Assume, as in Algorithm 2, that cmax > 1.
Let {εk} be a sequence such that εk > 0 for all k ∈ IN . Assume that 0 < σmin < σ0 < σmax < ∞. In this
algorithm we define gk as a discrete approximation of the gradient vector at xk, as discussed and used in [14].

8

Given xk ∈ IRn, the steps for computing xk+1 are the following:

Algorithm 4. (Discrete gradient type algorithm)

Step 1. Decide wether or not to use a random direction
Compute a random real number 0 < z < 1. If z ≤ p then compute a random direction dk ∈ IRn such that

∆min ≤ ‖dk‖ ≤ ∆max,

and go to Step 3. Else (z > p) go to Step 2.

Step 2. Compute the discrete gradient at iteration 0
If k > 0 go to Step 2.

Step 2.1. Set y ← x0.
Step 2.2. For j = 1, . . . , n, execute Steps 1.3–1.5.
Step 2.3. Set h← εk sign([y]j).
Step 2.4. Set z = y + h ej .
Step 2.5. Set [g0]j = [f(z)− f(y)]/h.
Step 2.6. If f(z) < f(y), set y ← z.
Step 2.7. Re-define x0 ← y.

Step 3. Compute the search direction
Compute dk = −gk/σk.

Step 4. Backtracking
Step 4.1. Set

α← 1. (20)

Step 4.2. If (17) holds set αk = α. If αk = 1, go to Step 5 (Extrapolation).
If (17) holds and αk < 1, set y ← xk + αkdk and go to Step 6.
If (17) does not hold, compute αnew ∈ [τminα, τmaxα] using safeguarded quadratic interpolation, set

α← αnew and repeat the test (17).

Step 5. Extrapolation
Use Algorithm 2 to obtain c ≥ 1, set y = xk + cαkdk, and go to Step 6.

Step 6. Compute the new discrete gradient
Step 6.1. For j = 1, . . . , n, execute Steps 5.2–5.5.
Step 6.2. Set h← εk. If [y]j < [xk]j , set h← −h.
Step 6.3. Set z = y + h ej .
Step 6.4. Set [gk+1]j = [f(z)− f(y)]/h.
Step 6.5. If f(z) < f(y), set y ← z.

Step 7. Compute the new iterate
Set xk+1 ← y.

Step 8. Compute the inverse of the next step length
Choose σk+1 > 0 using your favorite gradient type method.

Remark 5. At Steps 1 and 5 of Algorithm 4, the discrete gradient is computed. When, at an auxiliary
point, it is detected that the functional value decreases, the auxiliary point is taken as central point of the

9

approximation and the new increment is computed starting from it. When one tries to exploit parallelism,
this is not the best decision, being better to keep the same central point throughout the gradient estimation
process and computing the auxiliary evaluations in parallel. The remark that follows holds for both versions
of the algorithm.

Remark 6. Algorithm 4 can be viewed as a particular case of Algorithm 1. Hence, from Corollary 1, the
following argument is obtained. If for infinitely many iterations condition (11) holds, then stationary points
will be found up to any arbitrary precision. The assumption concerning the angle between dk and the exact
negative gradient at xk seems to be quite reasonable when the directions dk are built using a discrete approxi-
mation of the exact gradient vector with sufficiently small values of εk. In practice, for all k, εk = 10−8‖x0‖∞
(if ‖x0‖∞ = 0, then we chose εk = 10−8).

We present numerical results obtained with algorithm 4, where we choose for the step length, at Step 8,

σk+1 = max{σmin,min{σmax,
〈gk+1 − gk, xk+1 − xk〉
‖xk+1 − xk‖2

}},

i. e., we are using the spectral gradient method [3, 26].
Now our test set is composed by the fifteen (from 21 to 35) problems from Moré, Garbow and Hillstrom

collection [23] that can be run for different values of n. They were also run in Fortran 77, double precision.
Algorithmic parameter choices for these tests were mostly the same used for the Algorithm 3 implementation,
except for σmin = 10−10, σmax = 1010, tol = 10−6 and kmax = 1500. The results are shown in Tables 2–4,
according to the different values of p. The notation of these tables is similar to the one of Table 1, except that
the number of non descent directions generated during the process is given in column “AscDir” and we also
provide the norm of the discrete gradient at the solution obtained by the algorithm in column “normg”.

Prob n Conv It InterIt Searches Evalf AscDir f difx normg

21 100 2 60 65 8 6226 0 4.29E-07 7.11E-07 5.94E-04
22 100 2 468 5 2 47374 0 3.66E-06 9.98E-07 1.53E-04
23 100 3 1 1001 2 1204 0 1.14E+11 5.00E-01 2.93E+22
24 100 2 243 0 0 24644 0 9.71E+04 9.16E-07 1.82E-02
25 100 1 254 1374 227 27130 0 7.14E-10 2.22E-05 2.29E-01
26 100 2 175 7 3 17783 0 1.84E-06 8.86E-07 4.92E-06
27 100 2 4 0 0 505 0 4.02E-09 8.54E-08 6.51E-05
28 100 2 99 41 14 10141 0 1.08E-06 8.89E-07 2.68E-05
29 100 1 5 0 0 607 0 4.91E-11 1.39E-03 1.20E-04
30 100 1 24 0 0 2526 0 3.02E-10 1.04E-04 7.18E-04
31 100 1 16 0 0 1718 0 1.13E-10 3.13E-05 2.23E-03
32 100 1 2 0 0 304 0 2.56E-15 1.90E+01 1.76E-02
33 100 5 1500 5137 1499 156738 0 3.43E+09 2.66E-01 3.96E+10
34 100 5 1500 4854 1499 156455 0 2.75E+10 6.35E-01 1.07E+11
35 100 2 334 35 18 33870 0 9.48E-03 9.58E-07 1.39E-03

Table 2: Discrete spectral gradient algorithm - p = 0.

Prob n Conv It InterIt Searches Evalf AscDir f difx normg

21 100 2 167 92 21 17060 3 2.37E-07 5.40E-07 4.45E-04
22 100 5 1500 173 105 151774 28 4.687E-05 3.00E-04 5.19E-02
23 100 NC 1 0 0 202 0 NaN NaN NaN
24 100 2 1451 150 35 146802 33 9.71E+04 8.80E-07 2.49E-02
25 100 1 21 6 3 1129 0 8.55E-12 1.78E-04 9.46E-01
26 100 2 132 25 5 13458 1 2.24E-06 8.87E-07 9.07E-06
27 100 2 4 0 0 505 0 4.02E-09 8.54E-08 6.51E-05
28 100 2 349 282 65 35632 2 1.07E-06 9.28E-07 2.53E-05
29 100 1 5 0 0 607 0 4.91E-11 1.39E-03 1.20E-04
30 100 1 24 0 0 2526 0 3.02E-10 1.04E-04 7.18E-04
31 100 1 16 0 0 1718 0 1.13E-10 3.13E-05 2.23E-03
32 100 1 2 0 0 304 0 2.56E-15 1.90E+01 1.76E-02
33 100 2 10 28 8 1139 0 1.16E+12 6.93E-08 7.30E+11
34 100 2 10 26 8 1137 1 4.26E+12 6.86E-08 1.34E+12
35 100 2 799 359 104 81159 20 9.48E-03 8.29E-07 1.17E-03

Table 3: Discrete spectral gradient algorithm - p = 0.05.

10

Prob n Conv It InterIt Searches Evalf AscDir f difx normg

21 100 2 129 95 18 13225 7 7.41E-07 9.33E-07 7.78E-04
22 100 5 1500 424 213 152025 80 2.28E-03 1.35E-04 2.72E-02
23 100 NC 1 0 0 202 0 NaN NaN NaN
24 100 5 1500 422 90 152023 74 9.71E+04 2.14E-02 5.00E+00
25 50 2 37 6 3 1944 1 1.15E-05 1.47E-07 6.77E-03
26 100 2 388 191 34 39480 13 1.37E-06 9.76E-07 4.66E-06
27 100 2 4 0 0 505 0 4.02E-09 8.54E-08 6.51E-05
28 100 2 187 101 31 19089 0 1.08E-06 9.79E-07 2.83E-05
29 100 1 5 0 0 607 0 4.91E-11 1.39E-03 1.20E-04
30 100 1 131 28 10 13361 7 6.41E-10 8.22E-06 3.05E-04
31 100 1 40 1 1 4143 2 8.43E-11 3.62E-05 1.41E-03
32 100 1 2 0 0 304 0 2.56E-15 1.90E+01 1.76E-02
33 100 2 8 23 6 932 2 3.54E+12 7.07E-08 1.27E+12
34 100 2 2 0 0 303 1 6.10E+12 7.14E-08 1.60E+12
35 100 2 1140 757 203 115998 48 9.48E-03 8.05E-07 1.17E-03

Table 4: Discrete spectral gradient algorithm - p = 0.1.

To analyze the performance of this discrete gradient type algorithm, for different values of p, we summarized
Tables 2–4, obtaining the figures of Table 5, where the second column shows the number of problems that
obtained “Conv=1”, and the last column contains the tests with final value of f close to f∗ (up to 10−6).

p Conv=1 ≈ f∗

0 5 2
0.05 5 2
0.1 4 2

Table 5: Summary of Tables 2–4

First we observe that using a suitable choice of step length, Algorithm 4 shows in general an effective
performance for different values of p. We also observe that, for some tests, the final value of the objective
function was less than 10−4. This occurred for three problems with each value of p. Notice that we set n = 100
in problem 35, while in [23] results are reported for this problem with, at most, ten variables. As f∗ must be
≈ 6.50 ∗ 10−3, if n = 10, we considered that the results obtained by algorithm 4, respect to problem 35, is
valuable. In summary, we can say that the discrete gradient type algorithm failed in four problems when p = 0
and p = 0.05 and in five problems with p = 0.1, representing, respectively, success in 73% and 67% of the tests.

In Table 6 we present results of Algorithm 4 to four large–scale problems, out of the same test set used
above. For these tests, the best results were obtained with M = 5.

Prob n Conv It InterIt Searches Evalf AscDir f difx normg

21 5000 2 36 15 5 185052 0 2.95D-05 5.86D-06 4.93D-03
26 5000 2 48 74 16 245123 2 9.44D-06 7.07D-06 1.28D-01
27 5000 2 4 0 0 25005 0 7.98D-03 5.01D-06 8.90D+00
31 5000 2 18 0 0 95019 0 2.094D-09 9.80D-06 8.69D-04

Table 6: Discrete spectral gradient algorithm (large-scale problems) - M = 5.

All of these tests were interrupted with “Conv=2”, but the values of f are close to f∗. We verify that good
results can be obtained combining the proposed nonmonotone line search strategy with a discrete gradient type
algorithm, specially if n is large.

5 Discrete inverse SR1 update

The symmetric rank one method (SR1) has been considered in the last few years as a serious quasi-Newton
competitor with the BFGS and the DFP methods for unconstrained optimization. At the k-th iteration, a
symmetric matrix Bk is given to approximate the Hessian of f , and a search direction is computed by

dk = −B−1
k gk.

11

The SR1 update for the next iteration is given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk
,

where the vector yk = gk+1 − gk, sk = xk+1 − xk, and gk is the exact gradient at xk. In this work, we propose
to use the approximated gradient vectors gk, without derivative information, as in the discrete gradient type
method (Section 4). This update, using the exact gradient, was first suggested independently by Broyden [8],
Davidon [12], and Fiacco and McCormick [15].

By the well-known Sherman-Morrison formula, we can also obtain the associated update for the inverse of
the approximated Hessian Hk:

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T yk
,

where, once again, we can use the approximated gradient vectors to build the matrices Hk.
An important characteristic of the SR1 update is that even if Bk is positive definite, then Bk+1 may be

indefinite. The same is true for Hk. Indeed, the denominator in both cases could be negative even when the
function is a convex quadratic [13, 16] and, so, the eigenvalues might be shifted to the negative side. Moreover,
the denominator could be zero or numerically zero, which could lead to numerical instability. However, in
practice, the SR1 updates are surprisingly good (see e.g. [9]). To explain this behavior, some theoretical
properties have been found [10, 16]. In particular, a very interesting property is the finite termination of the
method, under mild assumptions, for convex quadratic functions. In this case, the sequence of SR1 matrices
terminates at the exact Hessian (or the inverse) at iteration n+1 (see e.g. [16]). Moreover, for general functions,
the matrices generated by the SR1 formulas tend to be very good approximations of the Hessian matrix (or
the inverse), frequently better than the DFP and the BFGS matrices [10].

Concerning the drawback of the denominator being close to zero, a simple safeguard prevents the possible
breakdown and the presence of numerical instabilities. In practice, it has been observed that SR1 methods
perform well simply by skipping the update if the denominator is close to zero. To be precise, the update is
applied only if

|(yk −Bksk)T sk| ≥ ρ‖sk‖ ‖yk −Bksk‖, (21)

where 0 < ρ < 1 (typically ρ ≈ 10−7). If (21) does not hold, we set Bk+1 = Bk. A similar safeguard strategy
is designed when dealing with the matrices Hk.

When a non positive definite matrix is built (either Bk+1 or Hk+1), we might end up with an ascent
direction. For that reason, the combination of SR1 updates with line search globalization strategies has been
historically avoided. The presence of ascent directions, as discussed before, is totally acceptable by our line
search scheme, and the global convergence is guaranteed. We now present an algorithm for the discrete gradient
inverse SR1 update in which, based on our discussion of subsection 2.1, we use every once in a while a random
direction. Similar versions can be easily obtained for the discrete gradient direct SR1 update, and also for the
exact gradient SR1 updates.

Assume that f , τmin, τmax, {ηk}, and x0 are as in Algorithm 1. Assume that 0 < ρ < 1 and 0 < σmin <
σ0 < σmax <∞. Assume, as in Algorithm 2, that cmax > 1. Assume that ∆min and ∆max are as in Algorithm
3. Assume that H0 is a given initial symmetric and positive definite matrix, that g0 is the discrete gradient
at x0 obtained using Step 1 in Algorithm 4, and that 0 ≤ p < 1 is a real number. In this algorithm we define
βk = max{δ, ‖gk‖}, where 0 < δ � 1 is a fixed number and gk is the discrete approximation of the gradient
vector at xk described in Algorithm 4.

Given xk ∈ IRn, the steps for computing xk+1 are the following:

Algorithm 5. (Discrete-gradient inverse SR1 update)

Step 1. Decide wether or not to use a random direction

12

Compute a random real number 0 < z < 1. If z ≤ p then compute a random direction dk ∈ IRn such that

∆min ≤ ‖dk‖ ≤ ∆max,

and go to Step 3. Else (z > p) go to Step 2.

Step 2. Compute the SR1 search direction.
Compute dk = −Hk gk.

Step 3. Backtracking
Step 3.1. Set

α← 1. (22)

Step 3.2. If (17) holds set αk = α. If αk = 1, go to Step 4 (Extrapolation). If (17) holds and αk < 1, set
y ← xk + αkdk and go to Step 5.

If (17) does not hold, compute αnew ∈ [τminα, τmaxα] using safeguarded quadratic interpolation, set
α← αnew and repeat the test (17).

Step 4. Extrapolation
Use Algorithm 2 to obtain c ≥ 1, set y = xk + cαkdk, and go to Step 5.

Step 5. Compute the new iterate
Set xk+1 ← y.

Step 6. Compute the vector yk

Step 6.1. Using Step 5 in Algorithm 4, compute the new discrete gradient gk+1.
Step 6.2. Set yk = gk+1 − gk.

Step 7. Compute the new matrix Hk+1

Step 7.1. Set sk = xk+1 − xk.
Step 7.2. If |(sk −Hkyk)T yk| ≤ ρ‖yk‖ ‖sk −Hkyk‖ then set Hk+1 = Hk

Else

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

(sk −Hkyk)T yk

Remark 7. Algorithm 5 can be viewed as a particular case of Algorithm 1. Hence, from Theorem 2, with
probability 1, stationary points will be found up to any arbitrary precision.

We now present numerical results obtained with algorithm 5, using the same test set used in the previous
section, with n = 100, which is a medium-size dimension suitable for secant type methods. The experiments
were also run in Fortran 77, double precision and the required parameters were the same ones used for Algorithm
4. The results are shown in Tables 7–9, according to the different values of p. The notation of these tables is
identical to the one used for Tables 2–4.

13

Prob Conv It InterIt Searches Evalf AscDir f difx normg

21 2 46 1029 12 5777 7 1.37D+03 1.67D+00 1.88D+03
22 2 94 5 3 9600 11 2.74D-07 5.71D-06 2.02D-04
23 3 0 1000 1 2002 0 1.11D+17 1.00D+00 1.58D+29
24 2 256 8 3 25965 44 9.71D+04 2.73D-06 2.64D-01
25 1 31 3 1 3235 0 2.72D-09 1.08D-06 2.30D-02
26 2 113 8 3 11522 5 2.42D-06 1.75D-07 8.80D-05
27 2 3 5 1 409 0 3.86D-07 1.49D-06 1.43D-03
28 2 12 4 3 11417 0 1.23D-06 2.24D-07 1.38D-04
29 1 6 0 0 707 0 2.87D-13 4.85D-06 1.12D-06
30 2 248 258 72 25407 50 1.12D+01 2.74D-06 7.09D-04
31 2 230 238 80 23569 77 1.18D+01 9.15D-06 3.51D-03
32 1 3 1 1 405 0 2.50D-15 9.34D-08 2.00D-07
33 2 3 3 1 407 0 2.46D+01 8.19D-08 2.99D+02
34 2 3 3 1 407 0 2.61D+01 9.92D-07 7.37D+03
35 2 280 26 10 28407 53 9.50D-03 2.50D-07 7.62D-03

Table 7: Discrete inverse SR1 algorithm for n = 100, M = 15, and p = 0.

Prob Conv It InterIt Searches Evalf AscDir f difx normg

21 2 980 422 120 101043 220 0.4D-07 1.9D-07 3.4D-04
22 2 152 19 9 15712 19 2.2D-07 4.81D-07 1.8D-04
23 3 0 1000 1 1102 0 1.11D+12 1.00D+00 1.58D+21
24 2 249 34 15 24663 38 9.1D+04 4.1D-07 7.1D-01
25 2 45 3 1 3235 0 1.2D-06 5.08D-09 2.30D-03
26 2 158 121 13 16122 12 1.3D-06 8.1D-07 1.40D-05
27 1 11 5 1 1217 0 6.0D-09 1.2D-08 9.7D-05
28 2 41 16 1 4258 0 8.1D-07 8.2D-07 2.2D-04
29 1 7 0 0 808 0 0.5D-15 5.3D-07 1.7D-07
30 2 276 165 61 17407 51 5.1D+00 8.9D-07 4.2D-05
31 2 262 270 84 26569 47 1.2D+01 7.9D-07 3.51D-04
32 1 3 1 1 405 0 2.50D-15 9.34D-08 2.00D-07
33 2 3 3 1 407 0 2.46D+01 8.19D-08 2.99D+02
34 2 3 3 1 407 0 2.61D+01 9.92D-07 7.37D+03
35 2 148 126 17 15175 30 8.1D-03 3.1D-07 2.5D-02

Table 8: Discrete inverse SR1 algorithm for n = 100, M = 15, and p = 0.05.

Prob Conv It InterIt Searches Evalf AscDir f difx normg

21 2 1273 968 246 129642 291 0.4D-06 1.5D-07 1.1D-03
22 2 409 118 46 41528 48 4.0D-07 2.81D-07 1.4D-04
23 3 0 1000 1 1102 0 1.11D+12 1.00D+00 1.58D+21
24 2 215 44 17 21860 29 1.1D+05 2.9D-07 9.0D-01
25 2 288 3 1 29192 62 3.1D+01 9.7D-07 11.4D+00
26 2 181 183 22 18565 16 1.8D-06 5.6D-07 1.10D-04
27 1 9 5 1 1015 0 4.0D-09 1.9D-07 6.8D-05
28 2 9 15 1 1025 1 1.1D-06 2.0D-07 3.1D-04
29 1 9 3 1 1013 1 0.1D-15 4.8D-08 4.3D-08
30 2 319 351 110 32671 80 4.1D+00 4.1D-07 1.3D-04
31 2 396 351 97 40448 72 5.2D+02 8.1D-07 3.1D-04
32 1 3 1 1 405 0 4.50D-17 4.8D-08 6.2D-08
33 2 4 3 1 508 0 3.1D+00 4.3D-08 5.2D-01
34 2 3 3 1 407 0 4.1D+00 3.7D-07 7.0D-01
35 2 284 296 37 29081 40 1.1D-02 1.3D-07 4.5D-03

Table 9: Discrete inverse SR1 algorithm for n = 100, M = 15, and p = 0.1.

We observe, as expected from a secant type method, that algorithm 5 requires, quite frequently, fewer
iterations, and hence fewer function evaluations, than algorithm 4 for the same problems. In many cases,
the algorithm solves the problem even though ascent directions are being generated, and this is clearly an
advantage of the new line search strategy. In general, when p = 0 the method requires less iterations although
there are cases for which convergence was not observed. On the other hand, when p increases, the number of
iterations increases but also the number of successful results also increases. Based on this results, the value
of p = 0.05 seems to be a compromise between efficiency and theoretical robustness. This remark also applies
to our gradient type scheme (algorithm 4). Finally, we would like to mention that our discrete and globalized
SR1 update is an interesting candidate to be extended for constrained problems. In that setting, it may not
be possible to impose the curvature condition yt

ksk > 0, and thus the best known updates (e.g. BFGS) are

14

not recommended. For constrained problems, a line search SR1 update method could be a more flexible and
suitable option, and so it deserves further investigation.

As a final remark, we conjecture that the new line search should be useful when coupled with novel
derivative-free optimization algorithms [1, 4, 11], in particular those based on interpolatory quadratic models
[24, 25].

References

[1] P. Alberto, F. Nogueira, H. Rocha and L. N. Vicente [2004], Pattern search methods for user-provided
points: Application to molecular geometry problems, SIAM J. Opt. 14, pp. 1216-1236.

[2] G. Allaire [2001]. Shape Optimization by the Homogenization Method. Springer Verlag, New York.

[3] J. Barzilai and J.M. Borwein [1988], Two point step size gradient methods, IMA Journal of Numerical
Analysis 8, pp. 141–148.

[4] F. Van den Berghen and H. Bersini [2005], CONDOR, a new parallel, constrained extension of Pow-
ell’s UOBYQA algorithm: Experimental results and comparison with the DFO algorithm, Journal of
Computational and Applied Mathematics 181, pp. 157-175.

[5] E. G. Birgin, J. M. Mart́ınez and M. Raydan [2003], Inexact spectral gradient method for convex-
constrained optimization, IMA Journal on Numerical Analysis 23, pp. 539-559.

[6] C. Brezinski and A. C. Matos [1996], A derivation of extrapolation algorithms based on error estimates,
Journal of Computational and Applied Mathematics 66, pp. 5-26.

[7] C. Brezinski and M. Redivo Zaglia [1991], Extrapolation Methods. Theory and Practice, North-Holland,
Amsterdam.

[8] C. G. Broyden [1967], Quasi-Newton methods and their application to function minimization, Mathemat-
ics of Computation 21, pp. 368-381.

[9] R. H. Byrd, H. F. Khalfan and R. B. Schnabel [1996], Analysis of a rank-one trust region method, SIAM
J. Opt. 6, pp. 1025-1039.

[10] A. R. Conn, N. I. M. Gould and P. L. Toint [1991], Convergence of quasi-Newton matrices generated by
the symmetric rank one update, Math. Prog. 50, pp. 177-195.

[11] A. R. Conn, K. Scheinberg and Ph.L. Toint [1997], Recent progress in unconstrained nonlinear optimiza-
tion without derivatives, Math. Prog. 79, pp. 397-414.

[12] W. C. Davidon [1968], Variance algorithms for minimization, Computer J. 10, pp. 406-410.

[13] J. E. Dennis Jr. and R. B. Schnabel [1983]. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

[14] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, V. L. R. Lopes and J. M. Mart́ınez [2003], Discrete
Newton’s method with local variations and global convergence for nonlinear equations, Optimization 52,
pp. 417-440.

[15] A. V. Fiacco and G. P. McCormick [1968]. Nonlinear Programming: Sequential Unconstrained Minimiza-
tion Techniques. John Wiley and Sons, NY.

[16] R. Fletcher [1987]. Practical Methods of Optimization. John Wiley & Sons, New York.

[17] L. Grippo, F. Lampariello and S. Lucidi [1986], A nonmonotone line search technique for Newton’s
method, SIAM Journal on Numerical Analysis 23, pp. 707-716.

15

[18] J. Haslinger and R. A. E. Mäckinen [2003]. Introduction to Shape Optimization: Theory, Approximation,
and Computation. SIAM.

[19] W. La Cruz, J. M. Mart́ınez and M. Raydan [2006], Spectral residual method without gradient information
for solving large-scale nonlinear systems of equations, Mathematics of Computation 75, pp. 1449-1466.

[20] D.H. Li and M. Fukushima [2000], A derivative-free line search and global convergence of Broyden-like
method for nonlinear equations. Optimization Methods and Software., 13, pp. 181-201.

[21] S. Lucidi and M. Sciandrone [2002], On the global convergence of derivative–free methods for uncon-
strained optimization, SIAM J. Opt. 13, pp. 97-116.

[22] B. Mohammadi and O. Pironneau [2001]. Applied Shape Optimization for Fluids. Clarendon Press, Oxford.

[23] J. J. Moré, B. S. Garbow and K. E. Hillstrom [1981], Testing unconstrained optimization software, ACM
Transactions on Mathematical Software, 7, pp 17-41.

[24] M. J. D. Powell [2003], On trust region methods for unconstrained minimization without derivatives,
Math. Prog., 97, pp 605-623.

[25] M. J. D. Powell [2004], On the use of quadratic models in unconstrained minimization without derivatives,
Optimization Methods and Software, 19, pp 399-411.

[26] M. Raydan [1997], The Barzilai and Borwein gradient method for the large scale unconstrained mini-
mization problem. SIAM J. Opt., 7, pp. 26-33.

16

	portada-RT-2006-10.pdf
	DMROCT06.pdf

