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Abstract

New iterative schemes that use the residual direction are proposed and an-
alyzed for solving large-scale nonsymmetric linear systems. These schemes are
inspired by the success of recently proposed residual methods for nonlinear sys-
tems. The convergence is analyzed for general matrices, and strong convergence
is established when the symmetric part of the coefficient matrix is positive (neg-
ative) definite. A preliminar numerical experimentation is included to show
that they are competitive with well-known and well-established Krylov subspace
methods: GMRES and BiCGSTAB, with and without preconditioning.

Keywords: Linear systems, Krylov subspace methods, residual iterative schemes.

1 Introduction

We are interested in solving linear systems of equations

Ax = b, (1)

where A ∈ IRn×n is not symmetric, b ∈ IRn, and n is large.
Solving linear systems of equations can be seen as a particular (although very

special) case of solving nonlinear systems of equations. For nonlinear systems, some new
iterative schemes have recently been presented that use in a systematic way the residual
vectors as search directions [8, 9]. These ideas become effective, and competitive with
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Newton-Krylov ([2, 3, 4, 7]) schemes for large-scale nonlinear systems, when the step
lengths are chosen in a suitable way.

In this work we combine and adapt, for linear systems, the ideas introduced in
[8, 9] for the nonlinear case. To be precise, we present schemes that take advantage
of the method presented in [8] for choosing the direction, plus or minus the residual,
depending on the sign of a Rayleigh quotient closely related to the step length. They
also take advantage of the new globalization strategy proposed and analyzed in [9]
that allows the norm of the residual to decrease non monotonically and still guarantees
convergence.

2 General algorithm and convergence

Let the functions g : IRn → IRn and f : IRn → IR be given as

g(x) = Ax− b, (2)

and
f(x) = ‖g(x)‖2, (3)

where ‖ · ‖ denotes, throughout this work, the Euclidian norm. Let us assume that
{ηk} is a given sequence such that ηk > 0 for all k ∈ IN (the set of natural numbers)
and ∞∑

k=0

ηk = η <∞. (4)

Let us also assume that γ ∈ (0, 1) and 0 < σmin < σmax < 1. We now present our
general algorithm that uses the residual vector as search direction, and uses the spectral
steplength inspired by the success obtained recently for solving nonlinear systems of
equations [8, 9].

Algorithm 2.1. Residual Algorithm 1 (RA1)

Given: x0 ∈ IRn, α0 > 0, γ ∈ (0, 1), 0 < σmin < σmax < 1, {ηk}k∈IN such that (4)
holds. Set r0 = b− Ax0, and k = 0;

Step 1. If rk = 0, stop the process;

Step 2. Set βk = (rt
kArk)/(r

t
krk) and sgnk = sgn(βk);

Step 3. If βk = 0, then stop the process;

Step 4. Set λ← 1;

Step 5. If ‖rk − (λ/αk)sgnkArk‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2 go to Step 7;

Step 6. Choose σ ∈ [σmin, σmax], set λ← σλ, and go to Step 5;
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Step 7. Set λk = λ, xk+1 = xk + sgnk(λ/αk)rk, and rk+1 = rk − sgnk(λ/αk)Ark;

Step 8. Set αk+1 = |βk|, k = k + 1 and go to Step 1.

Remark 2.1. The vector rk is built recursevely in the algorithm, for the sake of efficiency,
but it is mathematically equivalent to rk = b− Axk for all k ∈ IN .

Remark 2.2. The spectral step length αk+1 = (rt
krk)/(r

t
kArk) for minimization was

introduced in the Barzilai-Borwein paper [1]. The properties of their method for convex
quadratic functions were established in [11]. For a review containing the more recent
advances on spectral choices of the steplength, see [6].

In order to present some convergence analysis for Algorithm 2.1, we first need some
technical results.

Proposition 2.1. Let the sequences {xk}k∈IN , {rk}k∈IN , {βk}k∈IN and {λk}k∈IN be gen-
erated by Algorithm 2.1. Then, the following properties hold.

(a) For all k ∈ IN :
g(xk) = −rk, (5)

g(xk+1) = g(xk)− sgnk(λk/αk)Ag(xk). (6)

(b) The vector
dk = sgnk(1/αk)rk = −sgnk(1/αk)g(xk)

is a descent direction for the function f , for all k ∈ IN . Moreover,

f(xk + λdk) = ‖rk − sgnk(λ/αk)Ark‖2, for all k ∈ IN.

(c) The iterates xk+1 = xk + λkdk and λk satisfy the following conditions

f(xk+1) ≤ f(xk) + ηk − γλ2
k‖g(xk)‖2, (7)

for k ≥ 0.

Proof. (a). Since rk = b − Axk, for k ∈ IN , then by the definition of g, the equations
(5) and (6) holds.

Proof of (b). Since ∇f(x) = 2Atg(x), then

∇f(xk)
tdk = 2(g(xk)

tA)(−sgnk(1/αk)g(xk))

= −2(g(xk)
tAg(xk))sgnk(1/αk)

= −2(βk(g(xk)
tg(xk)))sgnk(1/αk)

= −2(|βk|/αk)‖g(xk)‖2 < 0, for k ∈ IN. (8)
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Hence, dk is a descent direction for the function f for all k ∈ IN . Using now (a) and
the definition of g, f and dk, we obtain

f(xk + λdk) = ‖g(xk + λdk)‖2

= ‖A(xk + λdk)− b‖2

= ‖Axk + (λ/αk)sgnkArk − b‖2

= ‖g(rk) + (λ/αk)sgnkArk‖2

= ‖rk − (λ/αk)sgnkArk‖2.

Therefore, (b) holds.
Proof of (c). Using (a) and (b) it follows that

‖rk − (λ/αk)sgnkArk‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2

is equivalent to
f(xk + λdk) ≤ f(xk) + ηk − γλ2‖g(xk)‖2.

Consequently, the iterates xk+1 = xk + λkdk and λk satisfy (7), and (c) holds.

By Proposition 2.1 it is clear that Algorithm 2.1 can be viewed as an iterative
process for finding stationary points of f , that coincide with solutions of Ax = b. In
that sense, the convergence analysis for Algorithm 2.1 consists in proving that the
sequence of iterates {xk}k∈IN is such that limk→∞∇f(xk) = 0.

First we need to establish that Algorithm 2.1 is well defined.

Proposition 2.2. Algorithm 2.1 is well defined.

Proof. Since ηk > 0, then by the continuity of f(x), the condition

f(xk + λdk) ≤ f(xk) + ηk − γλ2‖g(xk)‖2,

is equivalent to

‖rk − (λ/αk)sgnkArk‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2,

that holds for λ > 0 sufficiently small.

Our next result guarantees that the whole sequence of iterates generated by Algo-
rithm 2.1 is contained in a subset of IRn.

Proposition 2.3. The sequence {xk}k∈IN generated by Algorithm 2.1 is contained in
the set

Φ0 = {x ∈ IRn : 0 ≤ f(x) ≤ f(x0) + η} . (9)
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Proof. Clearly f(xk) ≥ 0 for k ∈ IN . Hence, it suffices to prove that f(xk) ≤ f(x0) + η
for k ∈ IN . For that we first prove by induction that

f(xk) ≤ f(x0) +
k−1∑
i=0

ηi. (10)

Equation (10) holds for k = 1. Indeed, since λ1 satisfies (7) then

f(x1) ≤ f(x0) + η0.

Let us suppose that (10) holds for k− 1 where k ≥ 2. We will show that (10) holds for
k. Using (7) and (10) we obtain

f(xk) ≤ f(xk−1) + ηk−1 ≤ f(x0) +
k−2∑
i=0

ηi + ηk−1 = f(x0) +
k−1∑
i=0

ηi,

which proves that (10) holds for k ≥ 2. Finally, using (4) and (10) it follows that, for
k ≥ 0:

f(xk+1) ≤ f(x0) +
k∑

i=0

ηi ≤ f(x0) + η,

and the result is established.

For our convergence results, we need the following proposition that is presented and
established in [5] as Lemma 3.3. We include it here for the sake of completeness.

Proposition 2.4. Let {ak}k∈IN and {bk}k∈IN be sequences of positive numbers satisfying

ak+1 ≤ (1 + bk)ak + bk and
∞∑

k=0

bk <∞.

Then, {ak}k∈IN converges.

Proposition 2.5. If Φ0 is bounded and {xk}k∈IN is generated by Algorithm 2.1, then

∞∑
k=0

‖xk+1 − xk‖2 <∞, (11)

and,
lim
k→∞

λk‖g(xk)‖ = 0. (12)

Proof. Using Proposition 2.3 and the fact that Φ0 is bounded, {‖g(xk)‖}k∈IN is also
bounded. Since ‖xk+1 − xk‖ = λk‖g(xk)‖, then using (7) we have that

‖xk+1 − xk‖2 = λ2
k‖g(xk)‖2 ≤

ηk

γ
+

1

γ
(f(xk)− f(xk+1)). (13)
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Since ηk satisfies (4) and Φ0 is bounded, adding in both sides of (13) it follows that

∞∑
k=0

‖xk+1 − xk‖2 ≤
1

γ

∞∑
k=0

ηk +
1

γ

∞∑
k=0

(f(xk)− f(xk+1))

≤ η + f(x0)

γ
<∞,

which implies that
lim
k→∞
‖xk+1 − xk‖ = 0,

and so
lim
k→∞

λk‖g(xk)‖ = 0.

Hence, the proof is complete.

Proposition 2.6. If Φ0 is bounded and {xk}k∈IN is generated by Algorithm 2.1, then
the sequence {‖g(xk)‖}k∈IN converges.

Proof. Since f(xk) ≥ 0 and (1 + ηk) ≥ 1, for all k ∈ IN , then using (7) we have that

f(xk+1) ≤ f(xk) + ηk ≤ (1 + ηk)f(xk) + ηk.

Setting ak = f(xk) and bk = ηk, then it can also be written as

ak+1 ≤ (1 + bk)ak + bk,

and
∑∞

k=0 bk < η <∞. Therefore, by Proposition 2.4, the sequence {ak}k∈IN converges,
i.e., the sequence {f(xk)}k∈IN converges. Finally, since f(x) = ‖g(x)‖2 and ‖g(xk)‖ ≥
0, then the sequence {‖g(xk)‖}k∈IN converges.

We now present the main convergence result of this section. Theorem 2.1 shows
that either the process terminates at a solution or it produces a sequence {rk}k∈IN for
which limk→∞ rt

kArk = 0.

Theorem 2.1. If Φ0 is bounded, then Algorithm 2.1 terminates at a finite iteration i
where ri = 0, or it generates a sequence {rk}k∈IN such that

lim
k→∞

rt
kArk = 0.

Proof. Let us assume that Algorithm 2.1 does not terminate at a finite iteration. By
continuity, it suffices to show that all accumulation point x̄ of the sequence {xk}k∈IN

it satisfies that g(x̄)tAg(x̄) = 0. Be x̄ a accumulation point of {xk}k∈IN . Then, there
exists an infinite set of indices R ⊂ IN such that limk→∞,k∈R xk = x̄.

From Proposition 2.5 we have that

lim
k→∞

λk‖g(xk)‖ = 0
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that holds if
lim
k→∞
‖g(xk)‖ = 0, (14)

or if
lim inf

k→∞
λk = 0. (15)

If (14) holds, the result follows immediately.
Let us assume that (15) holds. Then, there exists an infinite set of indices K =

{k1, k2, k3, . . .} ⊆ IN such that
lim
j→∞

λkj
= 0.

If R ∩K = ∅, then by the Proposition 2.5

lim
k→∞,k∈R

‖g(xk)‖ = 0.

Therefore, the thesis of the theorem is established.
Without loss of generality, we can assume that K ⊆ R. By the way λkj

is chosen
in Algorithm 2.1, there exists an index j̄ sufficiently large such that for all j ≥ j̄, there
exists ρkj

(0 < σmin ≤ ρkj
≤ σmax) for which λ = λkj

/ρkj
does not satisfy condition

(7), i.e.,

f

(
xkj

+
λkj

ρkj

dkj

)
> f(xkj

) + ηkj
− γ

λ2
kj

ρ2
kj

‖g(xkj
)‖2

≥ f(xkj
)− γ

λ2
kj

ρ2
kj

‖g(xkj
)‖2.

Hence,

f(xkj
+

λkj

ρkj
dkj

)− f(xkj
)

λkj
/ρkj

> −γ
λkj

ρkj

‖g(xkj
)‖2 ≥ −γ

λkj

σmin

‖g(xkj
)‖2.

By the Mean Value Theorem it follows that

∇f(xkj
+ tkj

dkj
)tdkj

> −γ
λkj

σmin

‖g(xkj
)‖2, for j ≥ j̄, (16)

where tkj
∈ [0, λkj

/ρkj
] tends to zero when j → ∞. By continuity and the definitions

of βk and dk, we obtain

lim
j→∞

dkj
= −sgn

(
g(x̄)tAg(x̄)

g(x̄)tg(x̄)

)
(1/ᾱ)g(x̄), (17)

where ᾱ = limk→∞,k∈K αk. We can assume that ᾱ > 0. If ᾱ = 0, then by the definition
of the αk, the thesis of the theorem is established. Setting d̄ = limj→∞ dkj

and noticing
that (xkj

+ tkj
dkj

)→ x̄ when j →∞, then taking limits in (16) we have that

∇f(x̄)td̄ ≥ 0. (18)
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Since 2(Atg(x̄))td̄ = ∇f(x̄)td̄ < 0, then 2g(x̄)tAd̄ = 0. However from (17)

∇f(x̄)td̄ = −(2/ᾱ)g(x̄)tAg(x̄) = 0.

Therefore, g(x̄)tAg(x̄) = 0, with that which the thesis of the theorem is established.

Theorem 2.1 guarantees that Algorithm 2.1 converges to a solution of (1) whenever
the Rayleigh quotient of A,

c(x) =
xtAx

xtx
, x 6= 0, (19)

satisfies that |c(rk)| > 0, for k ≥ 1. If the matrix A is indefinite, then it could happen
that Algorithm 2.1 generates a sequence {rk}k∈IN that converges to the residual r̄ so
that r̄tAr̄ = 0 and r̄ 6= 0.

In our next result, we show the convergence of the algorithm when the symmetric
part of A, As = (At + A)/2, is positive definite, which appears in several different
applications. Of course, similar properties will hold when As is negative definite.

Theorem 2.2. If Φ0 is bounded and the matrix As is positive definite, then Algo-
rithm 2.1 terminates at a finite iteration i where ri = 0, or it generates a sequence
{rk}k∈IN such that

lim
k→∞

rk = 0.

Proof. Since As is positive definite, rt
kArk = rt

kASrk > 0, rk 6= 0, for all k ∈ IN . Then,
by the Theorem 2.1 the Algorithm 2.1 terminates at a finite iteration i where ri = 0,
or it generates a sequence {rk}k∈IN such that limk→∞ rk = 0.

To be precise, the next proposition shows that if As is positive definite, then in
Algorithm 2.1 it holds that βk > 0 and dk = (1/αk)rk, for all k ∈ IN .

Proposition 2.7. Let the matrix As be positive definite, and let αmin and αmax be the
smallest and the largest eigenvalues of As, respectively. Then the sequences {βk}k∈IN

and {dk}k∈IN , generated by Algorithm 2.1 satisfy that dk = (1/αk)rk, for k ∈ IN .

Proof. It is well-known that the Rayleigh quotient of A satisfies, for any x 6= 0,

0 < αmin ≤ c(x) ≤ αmax. (20)

By the definition of βk we have that

βk = c(rk) ≥ αmin > 0, for k ≥ 0.

Moreover, since βk > 0 for k ≥ 0, then

dk = sgn(βk)(1/αk)rk = (1/αk)rk, for k ≥ 0.
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Proposition 2.7 guarantees that the choice dk = (1/αk)rk is a descent direction,
when As is positive definite. This yields a simplified version of the algorithm for
solving linear systems when the matrix has positive (or negative) definite symmetric
part.

Algorithm 2.2. Residual Algorithm 2 (RA2)

Given: x0 ∈ IRn, α0 > 0, γ ∈ (0, 1), 0 < σmin < σmax < 1, {ηk}k∈IN such that (4)
holds. Set r0 = b− Ax0, and k = 0.

Step 1. If rk = 0, stop the process;

Step 2. Set λ← 1;

Step 3. If ‖rk − (λ/αk)Ark‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2 go to Step 5;

Step 4. Choose σ ∈ [σmin, σmax], set λ← σλ, and go to Step 3;

Step 5. Set λk = λ, xk+1 = xk + (λk/αk)rk, y rk+1 = rk − (λk/αk)kArk;

Step 6. Set αk+1 = (rt
kArk)/(r

t
krk), k = k + 1 and go to Step 1.

Remark 2.3. (i) Algorithm 2.2 is well defined.

(ii) The sequence {xk}k∈IN generated by Algorithm 2.2 is contained in Φ0.

(iii) Since αk+1 = c(rk) and c(x) satisfies (20), then

0 < αmin ≤ αk ≤ αmax, (21)

for k ≥ 1. Moreover, 0 < (λk/αk) ≤ σmaxα
−1
min, for k ≥ 1.

(iv) Since Algorithm 2.2 is a simplified version of the Algorithm 2.1 when As is positive
definite, then its convergence is established by Theorem 2.2.

Proposition 2.8. Let g and f be given by (2) and (3), respectively. Let us assume that
{xk}k∈IN , {rk}k∈IN and {λk}k∈IN , are generated by Algorithm 2.2. Then the following
properties hold

(a) For each k ∈ IN :

g(xk) = −rk,

g(xk+1) = g(xk)− (λk/αk)Ag(xk).

(b) The vector
dk = (1/αk)rk = −(1/αk)g(xk)

is a descent direction for f . Moreover,

f(xk + λdk) = ‖rk − (λ/αk)Ark‖2.
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(c) The iterates xk+1 = xk + λkdk and λk satisfy conditions (7), for k ≥ 0.

Proof. Setting sgn(βk) = 1 in the proof of Proposition 2.1 all the claims in (a), (b) and
(c) hold.

Proposition 2.9. If {xk}k∈IN is generated by Algorithm 2.2, then

∇f(xk)
tdk ≤ (−2αmin/αmax)‖g(xk)‖2, (22)

for k ≥ 1.

Proof. From Algorithm 2.2 we have that

∇f(xk)
tdk = (−2/αk)g(xk)

tAg(xk)

≤ (−2/αmax)g(xk)
tAg(xk)

≤ (−2αmin/αmax)g(xk)
tg(xk)

= (−2αmin/αmax)‖g(xk)‖2,

for k ≥ 1.

3 Numerical experiments

We report on some numerical experiments that illustrate the performance of algo-
rithm RA2, presented and analyzed previously, for solving non symmetric and positive
(or negative) definite linear systems. GMRES [12] and BiCGSTAB [14] are among
the best-known iterative methods for solving large-scale non symmetric linear systems
(see, e.g., [13, 15]). Therefore, we compare the performance of algorithm RA2 with
these two methods, without preconditioning and also taking advantage of two classical
preconditioning strategies of general use: Incomplete LU (ILU) and SSOR.

In all the experiments described here we implemented GMRES with the restart
parameters m = 20 (GMRES(20)) and m = 40 (GMRES(40)), and for all considered
methods we use the vector x0 = 0 as the initial guess. For algorithm RA2 we use
the following parameters: α0 = ‖b‖, γ = 10−4, σmin = 0.1, σmax = 0.5, and ηk =

104 (1− 10−6)
k
. For choosing a new λ at Step 4, we use the following procedure,

described in [9]: given the current λc > 0, we set the new λ > 0 as

λ =


σminλc if λt < σminλc,
σmaxλc if λt > σmaxλc,
λt otherwise,

where

λt =
λ2

cf(xk)

f(xk + λcd) + (2λc − 1)f(xk)
.
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In all experiments, computing was done on a Pentium IV at 3.0 GHz with MATLAB
6.0, and we stop the iterations when

‖rk‖
‖b‖

≤ ε, (23)

where 0 < ε � 1. The process can also be stopped prematurely for different reasons.
We report the different possible failures observed with different symbols as follows:

* : The method reaches the maximum (20000) number of iterations.

** : The method stagnates (three consecutive iterates are exactly the same).

*** : Overflow is observed while computing one of the internal scalars.

For our first experiments we consider a set of 10 test matrices, described in Table 1,
and we set the right hand side vector b = (1, 1, . . . , 1)t ∈ IRn. In Table 1 we report the
problem number (M), a brief description of the matrix, and the MATLAB commands
to generate it.

We summarize on Table 2 the behavior of GMRES(20), GMRES(40), BICGSTAB
and RA2 without preconditioning. We have chosen ε = 10−10 in (23) for stopping
the iterations. We report the matrix number (M) from Table 1, the dimension of the
problem (n); the number of computed residuals (CR), and the CPU time in seconds
until convergence (T).

In Tables 3 and 4 we report the results for the matrices 4, 5 ,6, 7 ,8 and 9, when
we use the following two preconditioning strategies.

(A) Incomplete LU factorization with drop tolerance
The preconditioning matrix is obtained, in MATLAB, with the command [L, U ]
= luinc(A,0.5).

(B) The SSOR preconditioning strategy
The preconditioning matrix is given by

(D − ωE)D−1(D − ωF ),

where−E is the strict lower triangular part of A, −F is the strict upper triangular
part of A, and D is the diagonal part of A. We take ω = 1.

In this case, we set ε = 5 × 0−15 in (23) for stopping the iterations. In Figures 1 y 2
we show the behavior of all considered methods when using preconditioning strategies
(A) and (B), respectively, for problems 4-9.

For our second test problem, we consider the second order centered-differences
discretization of

−∇2u + γ(xux + yuy) + βu = f, (24)
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Table 1: First set of test matrices

M Description MATLAB Commands

1 Sparse adjacency matrix
from NASA airfoil.

MATLAB demo: airfoil

2 Singular Toeplitz lower Hes-
senberg matrix

A=gallery(’chow’,n,1,1)

3 Circulant matrix A=gallery(’circul’,v), where
v ∈ IRn is such that

vi =


10−6, i = 1,
1, i = n/2,
−1, i = n,
0, otherwise.

4 Diagonally dominant, ill-
conditioned, tridiagonal
matrix

A=gallery(’dorr’,n,1)

5 Perturbed Jordan block A=gallery(’forsythe’,n,-1,2)
6 Matrix whose eigenvalues

lie on a vertical line in the
complex plane

A=gallery(’hanowa’,n,n)

7 Jordan block A=gallery(’jordbloc’,n,2)
8 Tridiagonal matrix with

real sensitive eigenvalues
A = -gallery(’lesp’,n)

9 Pentadiagonal Toeplitz ma-
trix

A=gallery(’toeppen’,n,1,10,n,-
10,-1)

10 Upper triangular matrix
discussed by Wilkinson and
others

A=gallery(’triw’,n,-0.5,2)

12



Table 2: GMRES(20), GMRES(40), BICGSTAB and RA2 without preconditioning

GMRES(20) GMRES(40) BICGSTAB RA2
M n CR T CR T CR T CR T
1 4253 60 0.406 60 0.375 ** ** 64 0.047
2 1000 229 3.047 229 3.000 423 9.266 538 5.594
3 5000 * * * * 1 0.016 2 0.000
4 500 20674 32.375 20674 32.594 549 0.188 19449 4.969
5 5000 28 0.313 28 0.234 77 0.141 29 0.016
6 5000 17 0.188 17 0.109 21 0.047 31 0.000
7 5000 27 0.297 27 0.188 62 0.125 28 0.000
8 5000 2562 22.203 2562 21.266 4740 13.688 10943 10.297
9 5000 4 0.094 4 0.031 4 0.031 4 0.000

10 5000 3067 26.172 3067 24.313 *** *** 3408 3.203

Table 3: GMRES(20), GMRES(40), BICGSTAB and RA2 with preconditioning (A)

GMRES(20) GMRES(40) BICGSTAB RA2
M n CR T CR T CR T CR T
4 50000 * * * * * * 3 0.078
5 500000 38 61.438 48 100.906 81 38.484 20 4.875
6 500000 1 2.125 1 2.641 1 0.844 2 0.703
7 500000 37 59.391 38 87.656 72 34.031 19 4.656
8 500000 21 35.688 21 36.813 46 23.234 11 2.938
9 500000 2 3.266 2 3.813 3 2.250 2 0.875

Table 4: GMRES(20), GMRES(40), BICGSTAB and RA2 with preconditioning (B)

GMRES(20) GMRES(40) BICGSTAB RA2
M n CR T CR T CR T CR T
4 50000 * * * * * * 3 0.109
5 500000 25 185.953 25 186.609 46 263.625 10 60.703
6 500000 1 1.688 1 2.188 1 0.641 2 0.469
7 500000 21 37.156 21 38.203 26 16.922 10 4.828
8 500000 11 15.203 11 15.344 23 12.313 7 2.297
9 500000 2 5.516 2 6.594 3 4.203 2 2.734
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Figure 1: Behavior of all methods when using preconditioning techniques (A)
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Figure 2: Behavior of all methods when using preconditioning techniques (B)
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on the unit square, with homogeneous Dirichlet boundary conditions, u = 0, on the
border of the region. We set the parameters γ = 7100 and β = 100 to guarantee that
the symmetric part of the matrix is positive definite. The discretization grid has 71
internal nodes per axis producing an n×n matrix where n = 5041. The right hand side
vector is chosen such that the solution vector is x = (1, 1 . . . , 1)t. In all the experiments
we choose the initial guess as x0 = (0, 0, . . . , 0)t. Once again we compare GMRES(20),
GMRES(40), BICGSTAB and RA2 with the preconditioning strategies (A) and (B).

In Table 5 we report the results obtained with GMRES, BICGSTAB and RA2 for
solving problem (24), when using the preconditioning strategies described in (A) and
(B). We set ε = 10−13 in (23) for stopping the iterations. In Figure 3 we show the
behavior of all methods when using preconditioning techniques (A) and (B) for solving
(24).

Table 5: GMRES(20), GMRES(40), BICGSTAB and RA2 for solving (24)

GMRES(20) GMRES(40) BICGSTAB RA2
Preconditioning strategy CR T CR T CR T CR T

(A) * * 730 12.984 * * 123 1.094
(B) * * 195 25.016 * * 19 2.266

We observe that, in general, RA2 is a robust method for solving non symmetric
linear systems whose symmetric part is positive (negative) definite. It is competitive
with the well-known GMRES and BICGSTAB in number of computed residuals and
CPU time, without preconditioning. We also observe that RA2 outperforms GMRES
and BICGSTAB when preconditioning strategies that reduce the number of cluster of
eigenvalues are incorporated.

4 Conclusions

We present a residual algorithm (RA2) for solving large-scale nonsymmetric linear sys-
tems when the symmetric part of the coefficient matrix is positive (or negative) definite.
Due to its simplicity, the method is very easy to implement, memory requirements are
minimal and, so, its use for solving large-scale problems is attractive (MATLAB codes
written by the authors are available by request).

We have compared the performance of the new residual method with GMRES
and BICGSTAB, on some test problems, without preconditioning and also using two
classical preconditioning strategies (ILU and SSOR). Our preliminary numerical results
indicate that using the residual direction with a suitable step length can be competitive
for solving large-scale problems, and preferable when the eigenvalues are clustered by
a preconditioning strategy. Many new preconditioning techniques have been recently
developed (see e. g., [13, 15] and references therein) that possess the clustering property
when dealing with nonsymmetric matrices. In general, any preconditioning strategy
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Figure 3: Behavior of all methods when using preconditioning techniques (A) and (B)
for solving (24)
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that reduces the number of cluster of eigenvalues of the coefficient matrix (suitable for
Krylov-subspace methods) should accelerate the convergence of the residual scheme
introduced in this work. In that sense, the new residual method can be viewed as an
extension of the preconditioned residual method, based on the Barzilai-Borwein choice
of step length, introduced in [10].

For nonsymmetric systems with an indefinite symmetric part, the proposed general
scheme RA1 can not guarantee convergence to solutions of the linear system, and
usually convergence to points that satisfy limk→∞ rt

kArk = 0, as predicted by Theorem
2.1, but such that rk 6= 0, is observed in practice. For this type of general linear
systems, Krylov-subspace methods with suitable preconditioning strategies are clearly
the methods of choice.
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