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Abstract: This paper presents a new algorithm to find and follow particular solutions of para-
meterized nonlinear systems. A block eigenvalue solver is embedded in a continuation framework
for the computation of some eigenvalues of large Jacobian matrices depending on one parameter.
Experiments on several problems show the reliability of the new approach in the accurate detection
of critical points. As a byproduct, one obtains information about the stability of the process with
no additional cost.
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1. INTRODUCTION

A significant number of problems arising in scientific areas can be modeled by systems of partial
differential equations (PDE). Typically these models are discretized in space, leading to large scale
discrete dynamical nonlinear systems. Very often these nonlinear systems depend on parameters,
and it is of great interest to study the behavior of solutions as the parameters are varied.
This work presents a new algorithm to solve and to analyze parameter dependent nonlinear systems
of the form:

G(x,α) = 0, (1)

where x ∈R
n, α ∈R, and G : R

n+1 →R
n. The aim here is to develop a block eigenvalue solver, and

embed it in a predictor-corrector continuation approach in order to analyze stability of steady state
solutions of (1). Information obtained with this eigensolver is also used to solve a linear system
at the predictor step. We use the block eigensolver to propagate a basis of eigenvectors from one
continuation step to the next. In this way, path following is combined with stability and bifurcation
analysis in the same procedure.



2. ARCLENGTH CONTINUATION

The basic purpose of a continuation method is to find solutions of (1) corresponding to particular
values of α. Continuation methods are also designed to detect and compute special solutions that
could be a sign of significant changes in the behavior of the process modeled by the PDE, and
this procedure is known as bifurcation analysis. The detection and computation of special points
is important because they indicate changes in the system, as for example, instability, existence of
two or more branches converging or emanating from a single point, and existence of periodic so-
lutions. Indeed, for many processes, this information can be used to change operation parameters
and thereby improve performance. However, when n is very large, the computational cost of this
additional procedure is generally prohibitive. The approach proposed in this work overcomes this
problem.

The output of a continuation algorithm is a set of solutions of different nonlinear systems of the
form given in (1), each one defined by a particular value of α. This set of solutions is then used to
construct one or several branches. A branch is a connected curve consisting of points (α, [x]) which
represent the solutions of these different systems. Here [x] is a scalar measure of the solution, as
for example, [x] = ‖x‖ or [x] = x(i), for some i. The graph constructed with the set of pairs (α, [x])
is known as a bifurcation diagram and it provides a graphical interpretation of the behavior of the
solutions.

Asuming that an initial solution (x0,α0) is known, algorithm (1) enumerates the steps of a pseudoar-
clength continuation method to follow regular points:

Algorithm 1 Arclength Continuation
1: Evaluate derivatives at x0: J = Gx(x0,α0) ; L = Gα(x0,α0)
2: Compute initial tangent: Jdx = −L ; dα = 1/

√

1+‖dx‖2

3: for i=1,2,...,nsteps do

4: Predictor step: Solve
(

J L
t0x t0α

)(

t1x
t1α

)

=

(

0
1

)

5: x0
1 = xi−1 + ∆s

‖t1‖
t1x

6: α0
1 = αi−1 + ∆s

‖t1‖
t1α

7: Corrector Step:
8: for j=1,2,...,until convergence do
9: Solve Gx(x

j
i ,α

j
i )∆x = −G(x j

i ,α
j
i )

10: x j+1
i = x j

1 +∆xx ; α j+1
i = α j

i +∆xα

11: end for
12: Prepare the next step: Adapt step-size ∆s
13: t0 = t1 ; J = Gx(x j) ; L = Gα(x j)
14: end for

3. NEW CONTINUATION METHOD

In this section we present a new approach to compute particular solutions of a nonlinear system
depending on a parameter and, at the same time, to predict special points and their stability. A



disadvantage of traditional approaches is that they implement the continuation method and the lin-
ear stability analysis as two independent procedures, and do not allow interaction between them,
thereby discarding useful information obtained after the computation of the eigenvalues. In con-
trast, our method is based on Krylov approaches; thus, a small number (<< n) of eigenvalues is
computed by a procedure that has low memory requirements.

In each continuation step, a single Arnoldi based method successfully computes the eigenvalues
of the Jacobian matrix J, producing after m iterations the factorization:

JVm = VmHm + f eT
m, (2)

where the columns of V ∈ R
n×m are an orthogonal basis for the associated Krylov subspace, and

Hm is a Hessenberg matrix whose eigenvalues approximate those of J when the residual ‖ f eT
my‖ is

sufficiently small, even if ‖ f‖ is not small, where Hy = λy. In this case, the mth Arnoldi factoriza-
tion of J leads JVm ≈VmHm , where m << n. Instead of discarding this information, it can be used
to solve the linear system Jx = b, since this is approximately equivalent to solve the easier system
Hmy = V T

m b.

The previous analysis is also valid for a block Arnoldi based method. In this case, after m block
Arnoldi steps

JV[m] = V[m]H[m] +FET
[m], (3)

where V[m] = [V1,V2, ...,Vm] is an n× (m× k) matrix, having m orthogonal blocks of dimension
n× k, H[m] is a block-Hessenberg matrix, F is a matrix of order n× k, and E = [Z, ..,Z, Ik] with Z a
zero matrix of order k, and Ik is the identity matrix of order k.

In particular, we implement a block eigensolver where m = 1 and use it as part of the predictor
step of a continuation code. In this way, the large linear system of order n that needs to be solved
is replaced by a small system of order k (the block size), where k << n. This block eigenvalue
solver, called BLIRAM hereafter, is based on the implicitly restarted Arnoldi method ([7]) and it
was specifically designed for continuation algorithms. The output of BLIRAM is a 1-block Arnoldi
factorization closely related to the basis of wanted eigenvectors for the next point in the continua-
tion. Thus, we can expect this basis be a good starting matrix for the next BLIRAM iteration. This
is the main reason preference is given to a block eigensolver instead of to a single vector one.

By embedding BLIRAM in a continuation method we are able not only to study the stability of
the current solution and to detect special points, but also to propagate a basis for the desired invari-
ant subspace. Moreover, in a predictor-corrector continuation procedure, linear systems have to be
solved at the predictor and at the corrector step. Thus, the decomposition in (3) is useful for both
steps.

Next, we discuss how to embed a block eigensolver in a predictor-corrector pseudoarclength contin-
uation method, and how to do bifurcation and stability analysis during the continuation of solutions
of (1).

The first equation of the system in step 4 of algorithm (1) is equivalent to

J
t1x

t1α
= −L ≡ J χ = −L, (4)



while the second equation can be written as

t0xχ+ t0α =
1

t1α
. (5)

If x1 is a regular point, then t1α 6= 0; otherwise J would be singular and x0 a critical point. Treatment
of critical points is done in a different way, by solving an extended system, see [6] for details. Thus,
(4) is well defined and after computing the solution χ, we can substitute it in (5) in order to compute
t1α as

t1α =
1

tT
0xχ+ t0α

.

After that, we get t1x by a direct computation:

χ =
t1x

t1α
⇒ t1x = t1αχ.

The linear equation (4) is the base for introducing the block Arnoldi eigensolver in the continuation
method. Given a 1-block Arnoldi factorization of J, we can consider JV[1] ≈V[1]H[1] and substitute
this approximation into (4) in order to solve JV[1]y = −L, where V[1]y = χ. This is equivalent to
solve the smaller system:

H[1]y = −V T
[1]L. (6)

Hence, after solving the system (6), approximate solutions to (4) and (5) can be found, an con-
sequently a new predictor (x0

1,α
0
1). Previous ideas can be condensed in new statements in the

computation of the predictor, These statements are outlined in algorithm (2).

Algorithm 2 Predictor with BLIRAM
1: Compute k specified eigenvalues of J, JV[1] ≈V[1]H[1]

2: Study stability at the current point by checking the rigthmost eigenvalues
3: Check for special points: Bifurcation Analysis
4: Solve H[1]y = −V T

[1]L
5: χ = V[1]y
6: Compute a new tangent: t1α = 1

χT t0x+t0α
; t1x = t1αχ

7: Compute a predictor: x0
1 = xi−1 + ∆s

‖t1‖
t1x ; α0

1 = αi−1 + ∆s
‖t1‖

t1α

We propose a new arclength continuation method where the predictor step is given by this algo-
rithm.

4. NUMERICAL RESULTS

In order to analyze the behavior of BLIRAM in a continuation framework we implemented (in
MATLAB) an arclength continuation algorithm using the predictor outlined in algorithm (2). This
predictor-corrector continuation code will be called PC-BLIRAM hereafter. Next, we present a
comparison of PC-BLIRAM with CL-MATCONT, a MATLAB tool developed by Dhooge et. al
[5]. Specifically we will use CL-MATCONT and PC-BLIRAM to find steady state solutions of a
well known testing problem arising in chemical reactions: the Brusselator model.



Brusselator problem:
This is a model for a Belousov-Zhabotinsky reaction [2], which is described by the following sys-
tem of PDEs:

∂x
∂t

=
D1

L2
∂2x
∂t2 +β1 − (β2 +1)x+ x2y

∂y
∂t

=
D2

L2
∂2y
∂t2 +β2x− x2y (7)

with initial conditions: x(0,r) = x0(r); y(0,r) = y0(r). The variables r and t denote space and
time respectively; x and y represent the concentration of the two reactants, while D1

L2 and D2
L2 are dif-

fusion coefficients. The constants β1 and β2 come from the Dirichlet boundary conditions imposed
at r ∈ [0,1]:

x(t,0) = x(t,1) = β1; y(t,0) = y(t,1) = β2/β1.

A trivial solution of this system is (x,y) = (β1,β2/β1). The second order space derivative in (7) is
approximated using a grid of N points in x and y, and the three-point difference formula

∂2 f
∂x2 =

1
h2 ( fi−1 −2 fi + fi+1),

where h = 1
N+1 .

It is well known that near D1 = 0.008, D2 = 0.004, β1 = 2, β2 = 5.45, and L = 0.51302, the
Jacobian matrix J has a pair of complex eigenvalues that cross the imaginary axis. Figure 1 depicts
this situation. This figure shows the 30 rightmost eigenvalues of J for L = 0.51302. The red cir-
cles represent the six eigenvalues with the largest real part computed by BLIRAM. The interest in

Figure 1. The 30 rightmost eigenvalues of the Brusselator matrix of order 2000.

this problem is to determine values of L for which the rightmost eigenvalues of J are purely imagi-
nary; these values represent Hopf bifurcations and signal the onset of periodic solutions. Therefore,
chemists look for good continuation and bifurcation algorithms to detect these values of the para-
meter L. After discretization, equilibrium solutions are computed by solving a nonlinear system of
the form

G(X ,L) = 0, (8)



where X represents the concentration of the two reactants in the grid of points. The size of this
problem is 2N +1 and the Jacobian matrix is of order n = 2N. An approximate equilibrium for this
system is:

{

x(r) = β1 +2sin(πr)
y(r) = β2

β1
− 1

2 sin(πr).
(9)

Thus, a few Newton iterations starting from (x,y) = (β1,β2/β1) leads to an initial point x0 that can
be used to start a continuation procedure.

Test 1: In this test we compare CL-MATCONT and PC-BLIRAM in the continuation of equilib-
rium solutions of the discretized system that arises after the discretization of the Brusselator model.
For this experiment we define N = 40, which means that for each continuation step a nonlinear
system of the form given in (8) need to be solved. Here G : R

81 → R and the Jacobian matrices
are of order n = 2N = 80. The parameter L is varied in [0.05,0.4] and the continuation is stopped
when a closed curve is found. Both, CL-MATCONT and PC-BLIRAM, start from the same point
x0. Since this problem is small, the block size and number of Arnoldi iteration in BLIRAM are
chosen to be: b = 4 and m = 6 respectively. Thus, at each predictor step BLIRAM computes the 4
eigenvalues of the largest real part.

Results (Test 1): Both codes follow a path of solutions of the nonlinear system (8). For each
equilibrium found, they plot the 40th component of the solution X = [x;y] against the 81st compo-
nent. The later represents the parameter value L. Figure 2 shows the bifurcation diagrams obtained
for both codes. As we can see, both curves are very similar and contain the same information about

Figure 2. Comparison between CL-MATCONT and PC-BLIRAM. Both plots show position of Bifurcation
points (BP). PC-BLIRAM also shows stability information.

bifurcation points (BP). However, the curve produced by PC-BLIRAM also contains information
about the stability of each solution on the branch and position of turning points (T). Continuous line
indicates stable steady states, while discontinuous line represents unstable equilibria. Thus, one ad-
vantage of using PC-BLIRAM is that we know whether or not the bifurcation involves a change
in stability without any further calculation. The continuation of the first branch finishes when a
closed curve is found or after the computation of a specified number of points. The output of both
codes includes the set of computed points and the set of turning, bifurcation and Hopf points. In
particular, when bifurcation points exist, the corresponding tangents of the emerging branches are
also included in the output.



Test 2: This test is designed to analize the ability of both codes to follow a new branch after comput-
ing a branching point. Thus, we use the bifurcation point represented by the point (0.1697,2.1532)
in the figure 2 and the corresponding tangent. The parameters of BLIRAM remain the same.

Results (Test 2) : Figure 3 shows the bifurcation diagrams. Again both codes were able to follow
the new branch and detect new bifurcation points. Additionally, the bifurcation diagram produced
by PC-BLIRAM (rigth figure) reports changes in stability after each turning point; a situation that
is very common in real applications.

Stability information given by PC-BLIRAM comes at a price. We need to solve an eigenvalue

Figure 3. Tracing a new branch. (a) CL-MATCONT (b) PC-BLIRAM. Stability changes at each turning
point are reported by PC-BLIRAM.

problem for each solution found. This makes a PC-BLIRAM continuation step more expensive
than a CL-MATCONT continuation step. On the other hand, we notice that as the size of the prob-
lem increases, the difference in CPU time between the two codes decreases, while the difference in
memory requirements increases. Table 1 supports this conclusion. This table shows CPU time and
memory requirements for both codes. In all cases presented in this table, we keep b = 4 and k = 6.
Because of the higher memory requirements of CL-MATCONT, after n = 100 the process run out

Table 1. CPU and memory requirements. CM=CL-MATCONT, PB=PC-BLIRAM

Jacobian-size CPU(CM) CPU(PB) Memory(CM) Memory(PB)
40 9s 45.3 s 72,696 KB 45,768 KB
50 12.7s 48.1 s 93,200 KB 46,854 KB
60 13.8s 53.8 s 143,122 KB 46,892 KB
70 15.6s 54.2 s 251,280 KB 47,076 KB
80 20.1s 56.85 s 367,106 KB 47,232 KB
90 24.9 s 60.79 s 562,174 KB 47,948 KB

100 N/A 66.38s OUT OF MEMORY!! 48,015 KB

of memory. This is mainly because CL-MATCONT checks the singularity of a bialternate matrix
in order to predict Hopf points and the size of this bialternate matrix is n(n−1)/2. Hence, memory
increase is of order n2. Here is a second advantage of using PC-BLIRAM: since it is based on the
Arnoldi method, BLIRAM needs additional memory mainly for the block Hessenberg matrix H,
the block orthogonal Krylov basis V and the residual matrix F . Moreover, the number of columns
of these matrices do not depend on the size of the problem, but the block-size b and the number of



desired eigenvalues k, which are very small compared to n.

Now, not only is the computation of the predictor cheaper than in traditional approaches, but we
can also take advantage of the continuation environment and use the current V[1] matrix as the initial
block for the next application of the block Arnoldi eigensolver. In other words, we can carry the
basis forward to the next continuation step.

5. FINAL REMARKS

A Matlab code was designed to illustrate the advantages of having an eigensolver embedded in a
predictor-corrector method. This advantage has been previously presented by other authors, see for
instance the works by Baglama et. al. [1] and by Calvetti and Reichel [3, 4] where large continua-
tion problems are solved using an implicitly restarted block Lanczos method. Their results, like the
results obtained with PC-BLIRAM, are encouraging. Moreover, results of the comparison between
CL-MATCONT and PC-BLIRAM supports the idea that BLIRAM can be used to solve large con-
tinuation problems with a general Jacobian. Additional experiments on an industrial application
will be presented in the near future.
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